Suppr超能文献

探索光场的聚焦和深度诱导显著目标检测

Exploring Focus and Depth-Induced Saliency Detection for Light Field.

作者信息

Zhang Yani, Chen Fen, Peng Zongju, Zou Wenhui, Zhang Changhe

机构信息

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 400054, China.

Faculty of Information Science and Engineering, Ningbo University, No. 818, Ningbo 315211, China.

出版信息

Entropy (Basel). 2023 Sep 15;25(9):1336. doi: 10.3390/e25091336.

Abstract

An abundance of features in the light field has been demonstrated to be useful for saliency detection in complex scenes. However, bottom-up saliency detection models are limited in their ability to explore light field features. In this paper, we propose a light field saliency detection method that focuses on depth-induced saliency, which can more deeply explore the interactions between different cues. First, we localize a rough saliency region based on the compactness of color and depth. Then, the relationships among depth, focus, and salient objects are carefully investigated, and the focus cue of the focal stack is used to highlight the foreground objects. Meanwhile, the depth cue is utilized to refine the coarse salient objects. Furthermore, considering the consistency of color smoothing and depth space, an optimization model referred to as color and depth-induced cellular automata is improved to increase the accuracy of saliency maps. Finally, to avoid interference of redundant information, the mean absolute error is chosen as the indicator of the filter to obtain the best results. The experimental results on three public light field datasets show that the proposed method performs favorably against the state-of-the-art conventional light field saliency detection approaches and even light field saliency detection approaches based on deep learning.

摘要

光场中的大量特征已被证明对复杂场景中的显著性检测有用。然而,自底向上的显著性检测模型在探索光场特征的能力方面存在局限。在本文中,我们提出了一种聚焦于深度诱导显著性的光场显著性检测方法,该方法能够更深入地探索不同线索之间的相互作用。首先,我们基于颜色和深度的紧凑性定位一个粗略的显著性区域。然后,仔细研究深度、焦点和显著物体之间的关系,并使用焦堆栈的焦点线索来突出前景物体。同时,利用深度线索来细化粗略的显著物体。此外,考虑到颜色平滑和深度空间的一致性,改进了一种称为颜色和深度诱导细胞自动机的优化模型,以提高显著性图的准确性。最后,为避免冗余信息的干扰,选择平均绝对误差作为滤波器的指标以获得最佳结果。在三个公共光场数据集上的实验结果表明,所提出的方法优于当前最先进的传统光场显著性检测方法,甚至优于基于深度学习的光场显著性检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a4/10530224/fefd5f89ea19/entropy-25-01336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验