Suppr超能文献

排名显著性

Ranking Saliency.

作者信息

Zhang Lihe, Yang Chuan, Lu Huchuan, Ruan Xiang, Yang Ming-Hsuan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Sep;39(9):1892-1904. doi: 10.1109/TPAMI.2016.2609426. Epub 2016 Sep 14.

Abstract

Most existing bottom-up algorithms measure the foreground saliency of a pixel or region based on its contrast within a local context or the entire image, whereas a few methods focus on segmenting out background regions and thereby salient objects. Instead of only considering the contrast between salient objects and their surrounding regions, we consider both foreground and background cues in this work. We rank the similarity of image elements with foreground or background cues via graph-based manifold ranking. The saliency of image elements is defined based on their relevances to the given seeds or queries. We represent an image as a multi-scale graph with fine superpixels and coarse regions as nodes. These nodes are ranked based on the similarity to background and foreground queries using affinity matrices. Saliency detection is carried out in a cascade scheme to extract background regions and foreground salient objects efficiently. Experimental results demonstrate the proposed method performs well against the state-of-the-art methods in terms of accuracy and speed. We also propose a new benchmark dataset containing 5,168 images for large-scale performance evaluation of saliency detection methods.

摘要

大多数现有的自底向上算法基于像素或区域在局部上下文或整个图像中的对比度来测量其前景显著性,而少数方法则专注于分割出背景区域,从而突出物体。在这项工作中,我们不是只考虑显著物体与其周围区域之间的对比度,而是同时考虑前景和背景线索。我们通过基于图的流形排序对具有前景或背景线索的图像元素的相似性进行排序。图像元素的显著性是根据它们与给定种子或查询的相关性来定义的。我们将图像表示为一个多尺度图,其中精细的超像素和粗糙的区域作为节点。使用亲和矩阵,根据与背景和前景查询的相似性对这些节点进行排序。显著性检测采用级联方案进行,以有效地提取背景区域和前景显著物体。实验结果表明,所提出的方法在准确性和速度方面优于现有方法。我们还提出了一个新的基准数据集,包含5168张图像,用于显著性检测方法的大规模性能评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验