Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan.
Int J Mol Sci. 2023 Sep 11;24(18):13942. doi: 10.3390/ijms241813942.
Postprandial hyperlipidemia showing postprandial increases in serum triglyceride (TG) is associated with the development of atherosclerotic cardiovascular disease (ASCVD). To diagnose postprandial hyperlipidemia, the oral fat loading test (OFLT) should be performed; however, this test is very time-consuming and is difficult to perform. Elevated serum TG levels reflect an increase in TG-rich lipoproteins (TRLs), such as chylomicrons (CM), very low-density lipoproteins (VLDL), and their remnants (CM remnants [CMRs] and VLDL remnants [VLDLRs]). Understanding of elevation in CMR and/or VLDLR can lead us to understand the existence of postprandial hyperlipidemia. The measurement of apo B48, which is a constituent of CM and CMR; non-fasting TG, which includes TG content in all lipoproteins including CM and CMR; non-high-density lipoprotein cholesterol (non-HDL-C), which includes TRLs and low-density lipoprotein; and remnant cholesterol are useful to reveal the existence of postprandial hyperlipidemia. Postprandial hyperlipidemia is observed in patients with familial type III hyperlipoproteinemia, familial combined hyperlipidemia, chronic kidney disease, metabolic syndrome and type 2 diabetes. Postprandial hyperlipidemia is closely related to postprandial hyperglycemia, and insulin resistance may be an inducing and enhancing factor for both postprandial hyperlipidemia and postprandial hyperglycemia. Remnant lipoproteins and metabolic disorders associated with postprandial hyperlipidemia have various atherogenic properties such as induction of inflammation and endothelial dysfunction. A healthy diet, calorie restriction, weight loss, and exercise positively impact postprandial hyperlipidemia. Anti-hyperlipidemic drugs such pemafibrate, fenofibrate, bezafibrate, ezetimibe, and eicosapentaenoic acid have been shown to improve postprandial hyperlipidemia. Anti-diabetic drugs including metformin, alpha-glucosidase inhibitors, pioglitazone, dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide 1 analogues have been shown to ameliorate postprandial hyperlipidemia. Although sodium glucose cotransporter-2 inhibitors have not been proven to reduce postprandial hyperlipidemia, they reduced fasting apo B48 and remnant lipoprotein cholesterol. In conclusion, it is important to appropriately understand the existence of postprandial hyperlipidemia and to connect it to optimal treatments. However, there are some problems with the diagnosis for postprandial hyperlipidemia. Postprandial hyperlipidemia cannot be specifically defined by measures such as TG levels 2 h after a meal. To study interventions for postprandial hyperlipidemia with the outcome of preventing the onset of ASCVD, it is necessary to define postprandial hyperlipidemia using reference values such as IGT.
餐后高脂血症表现为血清三酰甘油(TG)餐后升高,与动脉粥样硬化性心血管疾病(ASCVD)的发展有关。为了诊断餐后高脂血症,应进行口服脂肪负荷试验(OFLT);然而,该试验非常耗时且难以进行。血清 TG 水平升高反映了富含 TG 的脂蛋白(TRL)的增加,如乳糜微粒(CM)、极低密度脂蛋白(VLDL)及其残粒(CM 残粒 [CMR] 和 VLDL 残粒 [VLDLR])。了解 CMR 和/或 VLDLR 的升高可以帮助我们理解餐后高脂血症的存在。载脂蛋白 B48 的测量,其是 CM 和 CMR 的组成部分;非空腹 TG,其包括 CM 和 CMR 中所有脂蛋白的 TG 含量;非高密度脂蛋白胆固醇(非 HDL-C),其包括 TRL 和低密度脂蛋白;以及残粒胆固醇有助于揭示餐后高脂血症的存在。家族性 III 型高脂蛋白血症、家族性混合型高脂血症、慢性肾脏病、代谢综合征和 2 型糖尿病患者存在餐后高脂血症。餐后高脂血症与餐后高血糖密切相关,胰岛素抵抗可能是餐后高脂血症和餐后高血糖的诱导和增强因素。与餐后高脂血症相关的残粒脂蛋白和代谢紊乱具有诱导炎症和内皮功能障碍等各种动脉粥样硬化特性。健康饮食、热量限制、减肥和运动对餐后高脂血症有积极影响。培伐他汀、非诺贝特、苯扎贝特、依折麦布和二十碳五烯酸等降脂药物已被证明可改善餐后高脂血症。二甲双胍、α-葡萄糖苷酶抑制剂、吡格列酮、二肽基肽酶-4 抑制剂和胰高血糖素样肽 1 类似物等抗糖尿病药物已被证明可改善餐后高脂血症。尽管钠-葡萄糖协同转运蛋白 2 抑制剂尚未被证明可降低餐后高脂血症,但它们可降低空腹载脂蛋白 B48 和残粒脂蛋白胆固醇。总之,适当了解餐后高脂血症的存在并将其与最佳治疗方法联系起来很重要。然而,餐后高脂血症的诊断存在一些问题。餐后 2 小时 TG 水平等措施不能特异性定义餐后高脂血症。为了研究通过预防 ASCVD 发病来干预餐后高脂血症的措施,需要使用 IGT 等参考值来定义餐后高脂血症。