Suppr超能文献

双重靶向抑制:抗叶酸药物的分子机制研究进展。

Dual-Target Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs.

机构信息

Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa.

Discipline of Pharmaceutical Sciences, School of Health Sciences, Westville Campus, University of KwaZulu-Natal, Durban 4001, South Africa.

出版信息

Int J Mol Sci. 2023 Sep 13;24(18):14021. doi: 10.3390/ijms241814021.

Abstract

The escalating prevalence of drug-resistant strains of has posed a significant challenge to global efforts in combating tuberculosis. To address this issue, innovative therapeutic strategies are required that target essential biochemical pathways while minimizing the potential for resistance development. The concept of dual targeting has gained prominence in drug discovery against resistance bacteria. Dual targeting recognizes the complexity of cellular processes and disrupts more than one vital pathway, simultaneously. By inhibiting more than one essential process required for bacterial growth and survival, the chances of developing resistance are substantially reduced. A previously reported study investigated the dual-targeting potential of a series of novel compounds against the folate pathway in . Expanding on this study, we investigated the predictive pharmacokinetic profiling and the structural mechanism of inhibition of UCP1172, UCP1175, and UCP1063 on key enzymes, dihydrofolate reductase (DHFR) and 5-amino-6-ribitylamino-2,4(1,3)-pyrimidinedione 5'-phosphate reductase (RV2671), involved in the folate pathway. Our findings indicate that the compounds demonstrate lipophilic physiochemical properties that promote gastrointestinal absorption, and may also inhibit the drug-metabolizing enzyme, cytochrome P450 3A4, thus enhancing their biological half-life. Furthermore, key catalytic residues (Serine, Threonine, and Aspartate), conserved in both enzymes, were found to participate in vital molecular interactions with UCP1172, which demonstrated the most favorable free binding energies to both DHFR and RV2671 (-41.63 kcal/mol, -48.04 kcal/mol, respectively). The presence of characteristic loop shifts, which are similar in both enzymes, also indicates a common inhibitory mechanism by UCP1172. This elucidation advances the understanding of UCP1172's dual inhibition mechanism against

摘要

耐药菌株的不断增多对全球结核病防治工作构成了重大挑战。为了解决这一问题,需要采用创新性的治疗策略,靶向关键的生化途径,同时最大限度地减少耐药性产生的可能性。在耐药菌的药物发现中,双重靶向策略已经引起了广泛关注。双重靶向认识到细胞过程的复杂性,并同时破坏不止一个重要途径。通过抑制细菌生长和存活所需的多个关键过程,大大降低了产生耐药性的可能性。之前有一项研究调查了一系列新型化合物对叶酸途径的双重靶向潜力。在此基础上,我们研究了 UCP1172、UCP1175 和 UCP1063 对关键酶二氢叶酸还原酶 (DHFR) 和 5-氨基-6-核糖基氨基-2,4(1,3)-嘧啶二酮 5'-磷酸还原酶 (RV2671) 的预测药代动力学特征和结构抑制机制,这些酶都参与了叶酸途径。我们的研究结果表明,这些化合物具有促进胃肠道吸收的亲脂理化特性,并且可能还会抑制药物代谢酶细胞色素 P450 3A4,从而延长其生物半衰期。此外,在两种酶中都保守的关键催化残基(丝氨酸、苏氨酸和天冬氨酸)被发现与 UCP1172 发生重要的分子相互作用,表明 UCP1172 与 DHFR 和 RV2671 的结合自由能都最大(分别为-41.63 kcal/mol 和-48.04 kcal/mol)。在两种酶中都存在特征环位移,这表明 UCP1172 具有共同的抑制机制。这一发现加深了对 UCP1172 对

的双重抑制机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e022/10530724/4da01f5f4a00/ijms-24-14021-g001.jpg

相似文献

1
Dual-Target Inhibition: Insights into the Molecular Mechanism of Antifolate Drugs.
Int J Mol Sci. 2023 Sep 13;24(18):14021. doi: 10.3390/ijms241814021.
3
Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents.
Cell Chem Biol. 2019 Jun 20;26(6):781-791.e6. doi: 10.1016/j.chembiol.2019.02.013. Epub 2019 Mar 28.
4
Potency boost of a dihydrofolate reductase inhibitor by multienzyme FH-dependent reduction.
Proc Natl Acad Sci U S A. 2021 Jun 22;118(25). doi: 10.1073/pnas.2025172118.
7
Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from .
ACS Infect Dis. 2020 Aug 14;6(8):2192-2201. doi: 10.1021/acsinfecdis.0c00263. Epub 2020 Jul 10.
8
Folate Pathway Inhibitors, An Underestimated and Underexplored Molecular Target for New Anti-tuberculosis Agents.
Mini Rev Med Chem. 2023;23(17):1711-1732. doi: 10.2174/1389557523666230206163154.
9
Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.
Arch Pharm (Weinheim). 2016 Aug;349(8):602-13. doi: 10.1002/ardp.201600066. Epub 2016 Jun 19.

引用本文的文献

1
Synthesis and characterization of gold(I) thiolate derivatives and bimetallic complexes for HIV inhibition.
Front Chem. 2024 Jul 25;12:1424019. doi: 10.3389/fchem.2024.1424019. eCollection 2024.
2
Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of - A Review.
Curr Drug Targets. 2024;25(9):620-634. doi: 10.2174/0113894501306302240526160804.

本文引用的文献

1
Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis.
N Engl J Med. 2022 Sep 1;387(9):810-823. doi: 10.1056/NEJMoa2119430.
4
Dual and selective inhibitors of pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate synthase (DHFR-TS) from .
J Enzyme Inhib Med Chem. 2019 Dec;34(1):1439-1450. doi: 10.1080/14756366.2019.1651311.
5
Drugging the Folate Pathway in Mycobacterium tuberculosis: The Role of Multi-targeting Agents.
Cell Chem Biol. 2019 Jun 20;26(6):781-791.e6. doi: 10.1016/j.chembiol.2019.02.013. Epub 2019 Mar 28.
6
Tuberculosis.
Lancet. 2019 Apr 20;393(10181):1642-1656. doi: 10.1016/S0140-6736(19)30308-3. Epub 2019 Mar 20.
8
Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights.
Future Med Chem. 2018 Jul 1;10(14):1665-1675. doi: 10.4155/fmc-2017-0197. Epub 2018 Jun 29.
9
Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations.
ACS Chem Biol. 2018 Jan 19;13(1):36-44. doi: 10.1021/acschembio.7b00903. Epub 2017 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验