文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载羟氯喹壳聚糖纳米粒诱导 A549 肺癌细胞的抗癌活性:设计、BSA 结合、分子对接、机制和生物学评价。

Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation.

机构信息

Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.

Clinical Pathology Department, University Hospital, Menoufia University, Shebin El-Kom 32512, Egypt.

出版信息

Int J Mol Sci. 2023 Sep 14;24(18):14103. doi: 10.3390/ijms241814103.


DOI:10.3390/ijms241814103
PMID:37762406
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10531786/
Abstract

The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC = 28.57 ± 1.72 μg/mL) compared to HCQ (102.21 ± 0.67 μg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.

摘要

本研究描述了羟氯喹(HCQ)的包封,由于其具有广泛的药理和药用用途,在传统医学中被广泛应用。本工作旨在将 HCQ 药物与 CS NPs 结合,生成一种具有改进特性和生物利用度的新型纳米复合材料。HCQ@CS NPs 大致呈道路状,表面光滑,平均粒径为 159.3±7.1nm,PDI 为 0.224±0.101,zeta 电位为+46.6±0.8mV。为了辅助开发用于癌症治疗的药物系统,使用停流和其他光谱方法以及分子对接分析研究了 HCQ 与 HCQ@CS NPs 和 BSA 之间相互作用的结合机制和亲和力。HCQ 和 HCQ@CS NPs 与 BSA 的结合是由基态复合物形成驱动的,可能伴随着非辐射能量转移过程,结合常数表明 HCQ@CS NPs-BSA 比 HCQ-BSA 更稳定。停流分析表明,纳米制剂 HCQ@CS NPS 除了增加 BSA 亲和力外,还改变了结合过程,并可能为相互作用开辟新途径。对接实验验证了 HCQ-BSA 复合物的形成,HCQ 与 BSA 结构上的位点 I 结合,主要与 Thr 578、Gln 579、Gln 525、Tyr 400 和 Asn 404 氨基酸结合。此外,与 HCQ(102.21±0.67μg/mL)相比,纳米制剂 HCQ@CS NPS 不仅提高了对 A549 肺癌细胞系的细胞毒性(IC=28.57±1.72μg/mL),而且与 HCQ 和氯霉素相比,对革兰氏阳性和革兰氏阴性细菌表现出更高的抗菌活性,这与结合常数一致。本研究中开发的纳米制剂可能为 A549 肺癌提供一种可行的治疗选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/e4fb7f100207/ijms-24-14103-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/d3373884c39b/ijms-24-14103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/95b038f59d00/ijms-24-14103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/f1f177ce47f7/ijms-24-14103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/1978ea02351b/ijms-24-14103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/7d06043f348e/ijms-24-14103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/1a5c84296c62/ijms-24-14103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/c7913571a37d/ijms-24-14103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/a37c7b4230b5/ijms-24-14103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/dfaa6be10568/ijms-24-14103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/89685e4f7508/ijms-24-14103-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/0405cf8cf0c2/ijms-24-14103-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/334c910633f2/ijms-24-14103-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/33826225913d/ijms-24-14103-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/975c7093e035/ijms-24-14103-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/dc65ef292e81/ijms-24-14103-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/e4fb7f100207/ijms-24-14103-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/d3373884c39b/ijms-24-14103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/95b038f59d00/ijms-24-14103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/f1f177ce47f7/ijms-24-14103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/1978ea02351b/ijms-24-14103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/7d06043f348e/ijms-24-14103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/1a5c84296c62/ijms-24-14103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/c7913571a37d/ijms-24-14103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/a37c7b4230b5/ijms-24-14103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/dfaa6be10568/ijms-24-14103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/89685e4f7508/ijms-24-14103-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/0405cf8cf0c2/ijms-24-14103-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/334c910633f2/ijms-24-14103-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/33826225913d/ijms-24-14103-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/975c7093e035/ijms-24-14103-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/dc65ef292e81/ijms-24-14103-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a855/10531786/e4fb7f100207/ijms-24-14103-g016.jpg

相似文献

[1]
Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation.

Int J Mol Sci. 2023-9-14

[2]
Picoplatin (II)-loaded chitosan nanocomposites as effective drug delivery systems: Preparation, mechanistic investigation of BSA/5-GMP/GSH binding and biological evaluations.

Carbohydr Res. 2024-11

[3]
Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells.

Int J Biol Macromol. 2015-4-1

[4]
Development and Optimization of Chitosan Nanoparticle-Based Intranasal Vaccine Carrier.

Molecules. 2021-12-29

[5]
Bactericidal Activity of Usnic Acid-Chitosan Nanoparticles against Persister Cells of Biofilm-Forming Pathogenic Bacteria.

Mar Drugs. 2020-5-20

[6]
Bio-functionalized copper oxide/chitosan nanocomposite using Sida cordifolia and their efficient properties of antibacterial, anticancer activity against on breast and lung cancer cell lines.

Environ Res. 2023-2-1

[7]
In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles.

Biomed Pharmacother. 2018-7-25

[8]
Controlled release and enhanced biological activity of chitosan-fabricated carbenoxolone nanoparticles.

Int J Biol Macromol. 2020-12-1

[9]
Characteristics, Cryoprotection Evaluation and In Vitro Release of BSA-Loaded Chitosan Nanoparticles.

Mar Drugs. 2020-6-15

[10]
Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells.

Bioorg Med Chem. 2019-3-4

引用本文的文献

[1]
GSH/pH-Responsive Chitosan-PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses.

Int J Mol Sci. 2025-6-24

[2]
Carbon nanotubes/ordered mesoporous carbon/chitosan nanocomposite as a promising carrier for everolimus targeted delivery toward lung cancer cells.

J Mater Sci Mater Med. 2025-5-31

[3]
Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies.

Int J Nanomedicine. 2024

[4]
Advanced Targeted Drug Delivery of Bioactive Agents Fortified with Graft Chitosan in Management of Cancer: A Review.

Curr Med Chem. 2025

本文引用的文献

[1]
Co-delivery of doxorubicin and hydroxychloroquine via chitosan/alginate nanoparticles for blocking autophagy and enhancing chemotherapy in breast cancer therapy.

Front Pharmacol. 2023-5-9

[2]
Stealth and pseudo-stealth nanocarriers.

Adv Drug Deliv Rev. 2023-7

[3]
DNA Binding and Cleavage, Stopped-Flow Kinetic, Mechanistic, and Molecular Docking Studies of Cationic Ruthenium(II) Nitrosyl Complexes Containing "NS" Core.

Molecules. 2023-3-28

[4]
Synthesis, Biophysical Interaction of DNA/BSA, Equilibrium and Stopped-Flow Kinetic Studies, and Biological Evaluation of bis(2-Picolyl)amine-Based Nickel(II) Complex.

Biomimetics (Basel). 2022-10-22

[5]
Deciphering the nature of binding of dexlansoprazole with DNA: Biophysical and docking approaches.

Int J Biol Macromol. 2022-9-30

[6]
Molecular analysis and therapeutic applications of human serum albumin-fatty acid interactions.

J Control Release. 2022-8

[7]
Synthesis, Characterization, Crystal Structure, DNA and HSA Interactions, and Anticancer Activity of a Mononuclear Cu(II) Complex with a Schiff Base Ligand Containing a Thiadiazoline Moiety.

ACS Omega. 2022-1-10

[8]
Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment.

Molecules. 2022-1-12

[9]
Chitosan Nanoparticles for Antiviral Drug Delivery: A Novel Route for COVID-19 Treatment.

Int J Nanomedicine. 2021

[10]
Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections.

Molecules. 2021-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索