Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
Department of Pharmacology, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, Selangor, Malaysia.
Int J Nanomedicine. 2024 Aug 15;19:8373-8400. doi: 10.2147/IJN.S472433. eCollection 2024.
Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
尽管制药行业在药物发现和开发方面取得了所有重大进展,但癌症仍然是科学界面临的最艰巨挑战之一。纳米技术的应用确实解决了与传统抗癌方式相关的主要问题;然而,单核吞噬细胞系统(MPS)对纳米颗粒(NPs)的不当识别、它们在生物流体中的稳定性差、有效载荷的过早释放以及低生物相容性限制了它们的临床转化。在过去几十年中,基于壳聚糖(CS)的纳米递药系统(例如,聚合物 NPs、胶束、脂质体、树枝状大分子、缀合物、固体脂质 NPs 等)已经引起了研究人员的关注,以改善化疗药物的药代动力学和药效学。然而,本篇综述的重点主要是批判性地讨论各种基于 CS 的 NPs 在治疗不同类型癌症方面的靶向潜力。根据它们的传递机制,我们将 CS 基 NPs 分为刺激响应型、被动型或主动型靶向纳米系统。此外,还考虑了各种功能化策略(例如,与聚乙二醇(PEG)接枝、疏水性取代、刺激响应连接物的连接以及靶向配体的缀合),以适应 CS-NPs 的结构,实现化疗药物的靶向递送。然而,基于 CS-NPs 的治疗方法具有很大的潜力,可以改善治疗效果,同时减轻化疗药物的脱靶效应,需要进行长期的安全性评估和临床试验,以实现其成功的临床转化。
Carbohydr Polym. 2021-11-15
Eur J Pharm Biopharm. 2015-6
Adv Mater. 2020-12
Colloids Surf B Biointerfaces. 2016-12-1
Nanoscale Horiz. 2018-12-11
Int J Mol Sci. 2021-9-6
Pharmaceuticals (Basel). 2025-7-22
Int J Nanomedicine. 2025-5-26
Int J Nanomedicine. 2025-5-20
Front Immunol. 2025-5-5
Naunyn Schmiedebergs Arch Pharmacol. 2025-3-18
Nanomaterials (Basel). 2024-11-22
Ultrason Sonochem. 2024-12