Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
Int J Mol Sci. 2023 Sep 21;24(18):14395. doi: 10.3390/ijms241814395.
BRCA1 is a key player in maintaining genomic integrity with multiple functions in DNA damage response (DDR) mechanisms. Due to its thiol-rich zinc-complexing domain, the protein may also be a potential target for redox-active and/or thiol-reactive (semi)metal compounds. The latter includes trivalent inorganic arsenic, which is indirectly genotoxic via induction of oxidative stress and inhibition of DNA repair pathways. In the present study, we investigated the effect of NaAsO on the transcriptional and functional DDR. Particular attention was paid to the potential impairment of BRCA1-mediated DDR mechanisms by arsenite by comparing BRCA1-deficient and -proficient cells. At the transcriptional level, arsenite itself activated several DDR mechanisms, including a pronounced oxidative stress and DNA damage response, mostly independent of BRCA1 status. However, at the functional level, a clear BRCA1 dependency was observed in both cell cycle regulation and cell death mechanisms after arsenite exposure. Furthermore, in the absence of arsenite, the lack of functional BRCA1 impaired the largely error-free homologous recombination (HR), leading to a shift towards the error-prone non-homologous end-joining (NHEJ). Arsenic treatment also induced this shift in BRCA1-proficient cells, indicating BRCA1 inactivation. Although BRCA1 bound to DNA DSBs induced via ionizing radiation, its dissociation was impaired, similarly to the downstream proteins RAD51 and RAD54. A shift from HR to NHEJ by arsenite was further supported by corresponding reporter gene assays. Taken together, arsenite appears to negatively affect HR via functional inactivation of BRCA1, possibly by interacting with its RING finger structure, which may compromise genomic stability.
BRCA1 是维持基因组完整性的关键因子,具有多种 DNA 损伤反应(DDR)机制的功能。由于其富含硫醇的锌络合结构域,该蛋白也可能是氧化还原活性和/或硫醇反应(半)金属化合物的潜在靶标。后者包括三价无机砷,它通过诱导氧化应激和抑制 DNA 修复途径间接遗传毒性。在本研究中,我们研究了 NaAsO 对转录和功能性 DDR 的影响。特别关注亚砷酸盐通过诱导氧化应激和抑制 DNA 修复途径对 BRCA1 介导的 DDR 机制的潜在损害,通过比较 BRCA1 缺陷和功能正常的细胞。在转录水平上,亚砷酸盐本身激活了几种 DDR 机制,包括明显的氧化应激和 DNA 损伤反应,主要独立于 BRCA1 状态。然而,在功能水平上,在暴露于亚砷酸盐后,在细胞周期调节和细胞死亡机制中观察到明显的 BRCA1 依赖性。此外,在没有亚砷酸盐的情况下,缺乏功能性 BRCA1 会损害大部分无差错同源重组(HR),导致易错的非同源末端连接(NHEJ)。砷处理也在 BRCA1 功能正常的细胞中诱导了这种转变,表明 BRCA1 失活。尽管 BRCA1 结合到通过电离辐射诱导的 DNA DSB,但它的解离受到损害,与下游蛋白 RAD51 和 RAD54 相似。亚砷酸盐从 HR 到 NHEJ 的转变也得到了相应的报告基因检测的支持。总之,亚砷酸盐似乎通过功能性 BRCA1 失活对 HR 产生负面影响,可能通过与 RING 指结构相互作用,从而损害基因组稳定性。