Suppr超能文献

KNN和ANN元建模在RTM填充过程预测中的应用。

Application of KNN and ANN Metamodeling for RTM Filling Process Prediction.

作者信息

Chai Boon Xian, Eisenbart Boris, Nikzad Mostafa, Fox Bronwyn, Blythe Ashley, Bwar Kyaw Hlaing, Wang Jinze, Du Yuntong, Shevtsov Sergey

机构信息

Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

CSIRO, Clayton, VIC 3168, Australia.

出版信息

Materials (Basel). 2023 Sep 7;16(18):6115. doi: 10.3390/ma16186115.

Abstract

Process simulation is frequently adopted to facilitate the optimization of the resin transfer molding process. However, it is computationally costly to simulate the multi-physical, multi-scale process, making it infeasible for applications involving huge datasets. In this study, the application of K-nearest neighbors and artificial neural network metamodels is proposed to build predictive surrogate models capable of relating the mold-filling process input-output correlations to assist mold designing. The input features considered are the resin injection location and resin viscosity. The corresponding output features investigated are the number of vents required and the resultant maximum injection pressure. Upon training, both investigated metamodels demonstrated desirable prediction accuracies, with a low prediction error range of 5.0% to 15.7% for KNN metamodels and 6.7% to 17.5% for ANN metamodels. The good prediction results convincingly indicate that metamodeling is a promising option for composite molding applications, with encouraging prospects for data-intensive applications such as process digital twinning.

摘要

过程模拟经常被用于促进树脂传递模塑工艺的优化。然而,模拟多物理场、多尺度过程的计算成本很高,这使得它对于涉及大量数据集的应用来说不可行。在本研究中,提出应用K近邻和人工神经网络元模型来构建预测替代模型,该模型能够关联充模过程的输入-输出相关性,以辅助模具设计。所考虑的输入特征是树脂注射位置和树脂粘度。所研究的相应输出特征是所需的排气孔数量和由此产生的最大注射压力。经过训练,两种研究的元模型都表现出了理想的预测精度,KNN元模型的预测误差范围较低,为5.0%至15.7%,ANN元模型为6.7%至17.5%。良好的预测结果令人信服地表明,元建模是复合材料成型应用的一个有前途的选择,对于诸如过程数字孪生等数据密集型应用具有令人鼓舞的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验