Pîrvu Cosmin Ionuț, Sover Alexandru, Abrudeanu Mărioara
Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.
Institute for Nuclear Research, Câmpului Street nr. 1, 115400 Mioveni, Romania.
Polymers (Basel). 2024 Dec 23;16(24):3603. doi: 10.3390/polym16243603.
This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications. This review discusses the evolution of lead-free ceramics, the challenges in improving polymer-ceramic interfaces, and innovations like 3D printing and surface functionalization, which enhance charge transfer and material durability. It also covers the effects of radiation on these materials, particularly in nuclear applications, and strategies to enhance radiation resistance. The review concludes that polymer materials play a critical role in advancing piezoelectric composite technologies by addressing environmental and functional challenges, paving the way for future innovations.
本综述探讨了将聚合物材料集成到压电复合结构中,重点关注其在传感器技术和可穿戴电子产品中的应用。将诸如钛酸钡、铌酸钾钠或锆钛酸铅等陶瓷相与聚偏氟乙烯等聚合物相结合的压电复合材料,因其增强的柔韧性、可加工性和电学性能而展现出巨大潜力。陶瓷的高压电灵敏度与聚合物的机械柔韧性之间的协同作用,使得能够开发出用于生物医学设备、能量转换和智能基础设施应用的先进材料。本综述讨论了无铅陶瓷的发展历程、改善聚合物 - 陶瓷界面所面临的挑战,以及诸如3D打印和表面功能化等创新技术,这些技术可增强电荷转移和材料耐久性。它还涵盖了辐射对这些材料的影响,特别是在核应用中的影响,以及提高抗辐射性的策略。综述得出结论,聚合物材料通过应对环境和功能挑战,在推动压电复合技术发展方面发挥着关键作用,为未来的创新铺平了道路。