Abraham Ashley, Virdi Sukhman, Herrero Nick, Bryant Israel, Nwakama Chisom, Jacob Megha, Khaparde Gargee, Jordan Destiny, McCuddin Mackenzie, McKinley Spencer, Taylor Adam, Peeples Conner, Ekpenyong Andrew
Biology Department, Creighton University, Omaha, NE 68178, USA.
Physics Department, Creighton University, Omaha, NE 68178, USA.
Micromachines (Basel). 2023 Aug 22;14(9):1653. doi: 10.3390/mi14091653.
There is rapidly emerging evidence from pre-clinical studies, patient samples and patient subpopulations that certain chemotherapeutics inadvertently produce prometastatic effects. Prior to this, we showed that doxorubicin and daunorubicin stiffen cells before causing cell death, predisposing the cells to clogging and extravasation, the latter being a step in metastasis. Here, we investigate which other anti-cancer drugs might have similar prometastatic effects by altering the biophysical properties of cells. We treated myelogenous (K562) leukemic cancer cells with the drugs nocodazole and hydroxyurea and then measured their mechanical properties using a microfluidic microcirculation mimetic (MMM) device, which mimics aspects of blood circulation and enables the measurement of cell mechanical properties via transit times through the device. We also quantified the morphological properties of cells to explore biophysical mechanisms underlying the MMM results. Results from MMM measurements show that nocodazole- and hydroxyurea-treated K562 cells exhibit significantly altered transit times. Nocodazole caused a significant ( < 0.01) increase in transit times, implying a stiffening of cells. This work shows the feasibility of using an MMM to explore possible biophysical mechanisms that might contribute to chemotherapy-induced metastasis. Our work also suggests cell mechanics as a therapeutic target for much needed antimetastatic strategies in general.
临床前研究、患者样本及患者亚群中迅速出现的证据表明,某些化疗药物会意外产生促转移作用。在此之前,我们发现阿霉素和柔红霉素在导致细胞死亡之前会使细胞变硬,使细胞易于发生阻塞和外渗,而外渗是转移过程中的一个步骤。在此,我们研究其他哪些抗癌药物可能通过改变细胞的生物物理特性而具有类似的促转移作用。我们用诺考达唑和羟基脲处理髓源性(K562)白血病癌细胞,然后使用微流控微循环模拟装置(MMM)测量其力学性能,该装置模拟血液循环的各个方面,并能通过细胞在装置中的通过时间来测量细胞力学性能。我们还对细胞的形态学特性进行了量化,以探究MMM结果背后的生物物理机制。MMM测量结果表明,经诺考达唑和羟基脲处理的K562细胞的通过时间有显著改变。诺考达唑使通过时间显著增加(<0.01),这意味着细胞变硬。这项工作表明了使用MMM来探索可能促成化疗诱导转移的生物物理机制的可行性。我们的工作还表明,一般而言,细胞力学可作为急需的抗转移策略的治疗靶点。