Suppr超能文献

基于振动的声流体效应器的液相石墨烯剥离

Liquid Phase Graphene Exfoliation with a Vibration-Based Acoustofluidic Effector.

作者信息

Liu Yu, Wen Zhaorui, Huang Ziyu, Wang Yuxin, Chen Zhiren, Lai Shen, Chen Shi, Zhou Yinning

机构信息

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.

出版信息

Micromachines (Basel). 2023 Aug 31;14(9):1718. doi: 10.3390/mi14091718.

Abstract

Liquid phase exfoliation (LPE) has emerged as a promising method for the industrial-scale production of graphene. However, one of its critical steps, namely sonication, has faced challenges due to high power consumption and low efficiency, leading to limited applicability in industrial settings. This study introduces a novel, cost-effective microfluidic sonication device designed to significantly reduce power consumption while efficiently assisting the LPE process for graphene production. By coupling a capillary with a buzzer and applying an appropriate electric signal, simulation and particle tracing experiments reveal the generation of robust shear forces resulting from acoustic streaming and cavitation when the capillary end is immersed in the liquid. For the first time, the capillary-based sonication device was effectively utilized for graphene exfoliation in a DMF (N,N-Dimethylformamide) + NaOH liquid phase system. The SEM (Scanning Electron Microscope) and Raman characterization results corroborate the successful exfoliation of 100 nm with thicknesses below 10 nm graphene sheets from graphite flakes using this pioneering device. The values of I2D/IG increase after processing, which suggests the exfoliation of graphite flakes into thinner graphene sheets. The vibration-based acoustofluidic effector represents a versatile and scalable miniature device, capable of being employed individually for small-batch production, thereby optimizing the utilization of raw 2D materials, particularly in experimental scenarios. Alternatively, it holds the potential for large-scale manufacturing through extensive parallelization, offering distinct advantages in terms of cost-efficiency and minimal power consumption.

摘要

液相剥离法(LPE)已成为一种颇具前景的用于工业规模生产石墨烯的方法。然而,其关键步骤之一,即超声处理,由于高功耗和低效率而面临挑战,导致其在工业环境中的适用性有限。本研究介绍了一种新型的、具有成本效益的微流体超声处理装置,该装置旨在显著降低功耗,同时有效辅助用于石墨烯生产的LPE过程。通过将毛细管与蜂鸣器耦合并施加适当的电信号,模拟和粒子追踪实验表明,当毛细管末端浸入液体中时,会因声流和空化产生强大的剪切力。首次将基于毛细管的超声处理装置有效地用于在N,N - 二甲基甲酰胺(DMF)+氢氧化钠液相体系中进行石墨烯剥离。扫描电子显微镜(SEM)和拉曼光谱表征结果证实,使用这种开创性的装置成功地从石墨薄片上剥离出了厚度小于10 nm、尺寸为100 nm的石墨烯片。处理后I2D/IG值增加,这表明石墨薄片已剥离成更薄的石墨烯片。基于振动的声流体效应器是一种通用且可扩展的微型装置,能够单独用于小批量生产,从而优化原始二维材料的利用,特别是在实验场景中。或者,它具有通过广泛并行化进行大规模制造的潜力,在成本效益和最低功耗方面具有明显优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25a7/10534619/4c641b3d7cb4/micromachines-14-01718-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验