Suppr超能文献

基于表面声波的微流体装置用于微粒操控:微通道弹性对装置性能的影响。

Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.

作者信息

Mezzanzanica Gianluca, Français Olivier, Mariani Stefano

机构信息

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.

Electronics, Communication systems and Microsystems (ESYCOM), Université Gustave Eiffel, National Centre of Scientific Research (CNRS), F-77454 Marne-la-Vallée, France.

出版信息

Micromachines (Basel). 2023 Sep 21;14(9):1799. doi: 10.3390/mi14091799.

Abstract

Size sorting, line focusing, and isolation of microparticles or cells are fundamental ingredients in the improvement of disease diagnostic tools adopted in biology and biomedicine. Microfluidic devices are exploited as a solution to transport and manipulate (bio)particles via a liquid flow. Use of acoustic waves traveling through the fluid provides non-contact solutions to the handling goal, by exploiting the acoustophoretic phenomenon. In this paper, a finite element model of a microfluidic surface acoustic wave-based device for the manipulation of microparticles is reported. Counter-propagating waves are designed to interfere inside a PDMS microchannel and generate a standing surface acoustic wave which is transmitted to the fluid as a standing pressure field. A model of the cross-section of the device is considered to perform a sensitivity analysis of such a standing pressure field to uncertainties related to the geometry of the microchannel, especially in terms of thickness and width of the fluid domain. To also assess the effects caused by possible secondary waves traveling in the microchannel, the PDMS is modeled as an elastic solid material. Remarkable effects and possible issues in microparticle actuation, as related to the size of the microchannel, are discussed by way of exemplary results.

摘要

微颗粒或细胞的尺寸分选、线聚焦和分离是改进生物学和生物医学中疾病诊断工具的基本要素。微流体装置被用作通过液流运输和操纵(生物)颗粒的解决方案。利用在流体中传播的声波,通过利用声泳现象,为处理目标提供了非接触式解决方案。本文报道了一种基于微流体表面声波的微颗粒操纵装置的有限元模型。反向传播波被设计为在聚二甲基硅氧烷(PDMS)微通道内干涉,并产生驻表面声波,该驻表面声波作为驻压力场传输到流体中。考虑该装置横截面的模型,以对这种驻压力场对与微通道几何形状相关的不确定性进行敏感性分析,特别是在流体域的厚度和宽度方面。为了评估微通道中可能传播的二次波所引起 的影响,将PDMS建模为弹性固体材料。通过示例性结果讨论了与微通道尺寸相关的微颗粒驱动中的显著影响和可能问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6fc/10537826/dae90a0e846d/micromachines-14-01799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验