Oliveira Marilene Silva, Santos Karina F D N, de Paula Railane Monteiro, Vitorino Luciana C, Bessa Layara A, Greer Alexander, Di Mascio Paolo, de Souza João C P, Martin-Didonet Claudia C G
Instituto Federal de Educação, Ciência e Tecnologia Goiano, Departamento de Agroquímica, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil.
Câmpus Henrique Santillo de Ciências Exatas e Tecnológicas Henrique Santillo, BR 153 n° 3105-Fazenda Barreiro do Meio, Anápolis 75132-903, GO, Brazil.
Microorganisms. 2023 Aug 31;11(9):2210. doi: 10.3390/microorganisms11092210.
Plant growth-promoting bacteria (PGPB) can be incorporated in biofertilizer formulations, which promote plant growth in different ways, such as fixing nitrogen and producing phytohormones and nitric oxide (NO). NO is a free radical involved in the growth and defense responses of plants and bacteria. NO detection is vital for further investigation in different agronomically important bacteria. NO production in the presence of KNO was evaluated over 1-3 days using eight bacterial strains, quantified by the usual Griess reaction, and monitored by 2,3-diaminonaphthalene (DAN), yielding 2,3-naphthotriazole (NAT), as analyzed by fluorescence spectroscopy, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The Greiss and trapping reaction results showed that (HM053 and FP2), (Br322), and (Pal 5) produced the highest NO levels 24 h after inoculation, whereas (Y2) and (SmR1) showed no NO production. In contrast to the literature, in NFbHP-NHCl-lactate culture medium with KNO, NO trapping led to the recovery of a product with a molecular mass ion of 182 Da, namely, 1,2,3,4-naphthotetrazole (NTT), which contained one more nitrogen atom than the usual NAT product with 169 Da. This strategy allows monitoring and tracking NO production in potential biofertilizing bacteria, providing future opportunities to better understand the mechanisms of bacteria-plant interaction and also to manipulate the amount of NO that will sustain the PGPB.
植物促生细菌(PGPB)可被纳入生物肥料配方中,这些配方以不同方式促进植物生长,例如固氮、产生植物激素和一氧化氮(NO)。NO是一种自由基,参与植物和细菌的生长及防御反应。NO检测对于进一步研究不同的具有重要农学意义的细菌至关重要。使用8种细菌菌株在1至3天内评估了在KNO存在下的NO产生情况,通过常用的格里斯反应进行定量,并通过2,3-二氨基萘(DAN)进行监测,DAN产生2,3-萘三唑(NAT),通过荧光光谱法、气相色谱-质谱法和高效液相色谱法进行分析。格里斯反应和捕获反应结果表明,(HM053和FP2)、(Br322)和(Pal 5)在接种后24小时产生的NO水平最高,而(Y2)和(SmR1)未产生NO。与文献不同的是,在含有KNO的NFbHP-NHCl-乳酸培养基中,NO捕获导致回收了一种分子量离子为182 Da的产物,即1,2,3,4-萘四唑(NTT),它比通常分子量为169 Da的NAT产物多一个氮原子。这种策略能够监测和追踪潜在生物肥料细菌中的NO产生情况,为未来更好地理解细菌与植物相互作用的机制以及控制维持PGPB所需的NO量提供了机会。