Suppr超能文献

通过异构图 Transformer 和多视图注意学习多类型邻居节点属性和语义,用于药物相关副作用预测。

Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction.

机构信息

School of Computer Science and Technology, Heilongjiang University, Harbin 130407, China.

Department of Computer Science, School of Engineering, Shantou University, Shantou 515000, China.

出版信息

Molecules. 2023 Sep 9;28(18):6544. doi: 10.3390/molecules28186544.

Abstract

Since side-effects of drugs are one of the primary reasons for their failure in clinical trials, predicting their side-effects can help reduce drug development costs. We proposed a method based on heterogeneous graph transformer and capsule networks for side-effect-drug-association prediction (TCSD). The method encodes and integrates attributes from multiple types of neighbor nodes, connection semantics, and multi-view pairwise information. In each drug-side-effect heterogeneous graph, a target node has two types of neighbor nodes, the drug nodes and the side-effect ones. We proposed a new heterogeneous graph transformer-based context representation learning module. The module is able to encode specific topology and the contextual relations among multiple kinds of nodes. There are similarity and association connections between the target node and its various types of neighbor nodes, and these connections imply semantic diversity. Therefore, we designed a new strategy to measure the importance of a neighboring node to the target node and incorporate different semantics of the connections between the target node and its multi-type neighbors. Furthermore, we designed attentions at the neighbor node type level and at the graph level, respectively, to obtain enhanced informative neighbor node features and multi-graph features. Finally, a pairwise multi-view feature learning module based on capsule networks was built to learn the pairwise attributes from the heterogeneous graphs. Our prediction model was evaluated using a public dataset, and the cross-validation results showed it achieved superior performance to several state-of-the-art methods. Ablation experiments undertaken demonstrated the effectiveness of heterogeneous graph transformer-based context encoding, the position enhanced pairwise attribute learning, and the neighborhood node category-level attention. Case studies on five drugs further showed TCSD's ability in retrieving potential drug-related side-effect candidates, and TCSD inferred the candidate side-effects for 708 drugs.

摘要

由于药物的副作用是其在临床试验中失败的主要原因之一,因此预测其副作用有助于降低药物开发成本。我们提出了一种基于异构图变换和胶囊网络的药物副作用关联预测方法(TCSD)。该方法编码并整合了来自多种类型邻接节点、连接语义和多视图成对信息的属性。在每个药物-副作用异构图中,目标节点有两种类型的邻接节点,即药物节点和副作用节点。我们提出了一种新的基于异构图变换的上下文表示学习模块。该模块能够编码特定的拓扑结构和多种节点之间的上下文关系。目标节点与其各种类型的邻接节点之间存在相似性和关联性连接,这些连接暗示了语义多样性。因此,我们设计了一种新策略来衡量邻接节点对目标节点的重要性,并整合目标节点与其多类型邻接节点之间连接的不同语义。此外,我们分别在邻接节点类型级别和图级别设计了注意力机制,以获得增强的有信息量的邻接节点特征和多图特征。最后,构建了基于胶囊网络的成对多视图特征学习模块,以从异构图中学习成对属性。我们使用公共数据集评估了我们的预测模型,交叉验证结果表明,该模型的性能优于几种最先进的方法。消融实验表明,基于异构图变换的上下文编码、位置增强的成对属性学习和邻接节点类别级别的注意力机制的有效性。对五种药物的案例研究进一步表明,TCSD 能够检索潜在的药物相关副作用候选物,并且 TCSD 推断了 708 种药物的候选副作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2be8/10537290/da08fc462ce9/molecules-28-06544-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验