School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China.
School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China.
J Biomed Inform. 2022 Jul;131:104098. doi: 10.1016/j.jbi.2022.104098. Epub 2022 May 28.
In drug development, unexpected side effects are the main reason for the failure of candidate drug trials. Discovering potential side effects of drugsin silicocan improve the success rate of drug screening. However, most previous works extracted and utilized an effective representation of drugs from a single perspective. These methods merely considered the topological information of drug in the biological entity network, or combined the association information (e.g. knowledge graph KG) between drug and other biomarkers, or only used the chemical structure or sequence information of drug. Consequently, to jointly learn drug features from both the macroscopic biological network and the microscopic drug molecules. We propose a hybrid embedding graph neural network model named idse-HE, which integrates graph embedding module and node embedding module. idse-HE can fuse the drug chemical structure information, the drug substructure sequence information and the drug network topology information. Our model deems the final representation of drugs and side effects as two implicit factors to reconstruct the original matrix and predicts the potential side effects of drugs. In the robustness experiment, idse-HE shows stable performance in all indicators. We reproduce the baselines under the same conditions, and the experimental results indicate that idse-HE is superior to other advanced methods. Finally, we also collect evidence to confirm several real drug side effect pairs in the predicted results, which were previously regarded as negative samples. More detailed information, scientific researchers can access the user-friendly web-server of idse-HE at http://bioinfo.jcu.edu.cn/idse-HE. In this server, users can obtain the original data and source code, and will be guided to reproduce the model results.
在药物研发中,意外的副作用是候选药物试验失败的主要原因。在硅中发现药物的潜在副作用可以提高药物筛选的成功率。然而,大多数先前的工作都是从单一角度提取和利用药物的有效表示。这些方法仅仅考虑了药物在生物实体网络中的拓扑信息,或者结合了药物与其他生物标志物之间的关联信息(例如知识图谱 KG),或者只使用了药物的化学结构或序列信息。因此,为了从宏观生物网络和微观药物分子两个方面共同学习药物特征,我们提出了一种名为 idse-HE 的混合嵌入图神经网络模型,它集成了图嵌入模块和节点嵌入模块。idse-HE 可以融合药物的化学结构信息、药物亚结构序列信息和药物网络拓扑信息。我们的模型将药物和副作用的最终表示视为两个隐含因素,以重构原始矩阵并预测药物的潜在副作用。在稳健性实验中,idse-HE 在所有指标上都表现出稳定的性能。我们在相同条件下重现了基线,实验结果表明 idse-HE 优于其他先进方法。最后,我们还收集了证据来证实预测结果中的几个真实药物副作用对,这些对以前被视为负样本。更详细的信息,科学研究人员可以访问 idse-HE 的用户友好型网络服务器,网址为 http://bioinfo.jcu.edu.cn/idse-HE。在该服务器中,用户可以获取原始数据和源代码,并将获得有关如何重现模型结果的指导。