文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态类别敏感超图推断与同异质邻居特征学习在药物相关微生物预测中的应用。

Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction.

机构信息

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

Department of Computer Science and Technology, Shantou University, Shantou 515063, China.

出版信息

Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae562.


DOI:10.1093/bioinformatics/btae562
PMID:39292557
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11441325/
Abstract

MOTIVATION: The microbes in human body play a crucial role in influencing the functions of drugs, as they can regulate the activities and toxicities of drugs. Most recent methods for predicting drug-microbe associations are based on graph learning. However, the relationships among multiple drugs and microbes are complex, diverse, and heterogeneous. Existing methods often fail to fully model the relationships. In addition, the attributes of drug-microbe pairs exhibit long-distance spatial correlations, which previous methods have not integrated effectively. RESULTS: We propose a new prediction method named DHDMP which is designed to encode the relationships among multiple drugs and microbes and integrate the attributes of various neighbor nodes along with the pairwise long-distance correlations. First, we construct a hypergraph with dynamic topology, where each hyperedge represents a specific relationship among multiple drug nodes and microbe nodes. Considering the heterogeneity of node attributes across different categories, we developed a node category-sensitive hypergraph convolution network to encode these diverse relationships. Second, we construct homogeneous graphs for drugs and microbes respectively, as well as drug-microbe heterogeneous graph, facilitating the integration of features from both homogeneous and heterogeneous neighbors of each target node. Third, we introduce a graph convolutional network with cross-graph feature propagation ability to transfer node features from homogeneous to heterogeneous graphs for enhanced neighbor feature representation learning. The propagation strategy aids in the deep fusion of features from both types of neighbors. Finally, we design spatial cross-attention to encode the attributes of drug-microbe pairs, revealing long-distance correlations among multiple pairwise attribute patches. The comprehensive comparison experiments showed our method outperformed state-of-the-art methods for drug-microbe association prediction. The ablation studies demonstrated the effectiveness of node category-sensitive hypergraph convolution network, graph convolutional network with cross-graph feature propagation, and spatial cross-attention. Case studies on three drugs further showed DHDMP's potential application in discovering the reliable candidate microbes for the interested drugs. AVAILABILITY AND IMPLEMENTATION: Source codes and supplementary materials are available at https://github.com/pingxuan-hlju/DHDMP.

摘要

动机:人体中的微生物在影响药物功能方面起着至关重要的作用,因为它们可以调节药物的活性和毒性。目前大多数预测药物-微生物关联的方法都是基于图学习的。然而,多种药物和微生物之间的关系是复杂的、多样化的和异构的。现有的方法往往无法充分地建模这些关系。此外,药物-微生物对的属性表现出长距离的空间相关性,这是之前的方法尚未有效整合的。

结果:我们提出了一种新的预测方法,名为 DHDMP,旨在对多种药物和微生物之间的关系进行编码,并整合沿各种邻接点的属性以及成对的长距离相关性。首先,我们构建了一个具有动态拓扑的超图,其中每个超边表示多个药物节点和微生物节点之间的特定关系。考虑到不同类别节点属性的异质性,我们开发了一种节点类别敏感的超图卷积网络来编码这些多样化的关系。其次,我们分别构建了药物和微生物的同构图,以及药物-微生物异构图,以促进整合每个目标节点的同质和异质邻居的特征。第三,我们引入了一个具有跨图特征传播能力的图卷积网络,将节点特征从同构图传递到异构图,以增强邻居特征表示学习。传播策略有助于两种类型的邻居的特征深度融合。最后,我们设计了空间交叉注意力来编码药物-微生物对的属性,揭示了多个成对属性补丁之间的长距离相关性。综合对比实验表明,我们的方法在药物-微生物关联预测方面优于最新方法。消融研究证明了节点类别敏感的超图卷积网络、具有跨图特征传播的图卷积网络和空间交叉注意力的有效性。对三种药物的案例研究进一步表明,DHDMP 有潜力用于发现感兴趣药物的可靠候选微生物。

可用性和实现:源代码和补充材料可在 https://github.com/pingxuan-hlju/DHDMP 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/309a99360655/btae562f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/6ccbbda42e18/btae562f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/a354010fe0b1/btae562f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/471982beca9e/btae562f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/309a99360655/btae562f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/6ccbbda42e18/btae562f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/a354010fe0b1/btae562f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/471982beca9e/btae562f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd7/11441325/309a99360655/btae562f4.jpg

相似文献

[1]
Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction.

Bioinformatics. 2024-9-2

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Enhancing microbe-disease association prediction via multi-view graph convolution and latent feature learning.

Comput Biol Chem. 2025-6-30

[4]
Multi-view based heterogeneous graph contrastive learning for drug-target interaction prediction.

J Biomed Inform. 2025-8

[5]
Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.

Bioinformatics. 2024-2-1

[6]
GPLMD: A Multi-Task Graph Learning Framework for inferring the relationships among lncRNAs, miRNAs and diseases.

Comput Biol Med. 2025-9

[7]
NASNet-DTI: accurate drug-target interaction prediction using heterogeneous graphs and node adaptation.

Brief Bioinform. 2025-7-2

[8]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[9]
Short-Term Memory Impairment

2025-1

[10]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

本文引用的文献

[1]
Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism.

Bioinformatics. 2024-6-3

[2]
Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes.

Bioinformatics. 2024-2-1

[3]
Drug and gut microbe relationships: Moving beyond antibiotics.

Drug Discov Today. 2023-11

[4]
[Summary of the 8 Symposium "Feeding the microbiota": prebiotics and probiotics].

Rev Med Suisse. 2023-6-7

[5]
A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism.

Sci Rep. 2023-5-6

[6]
GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.

BMC Bioinformatics. 2023-2-2

[7]
Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.

Brief Bioinform. 2023-3-19

[8]
Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health.

Sci Total Environ. 2023-2-20

[9]
GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.

BMC Bioinformatics. 2022-11-18

[10]
Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies.

Chem Rev. 2023-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索