Suppr超能文献

凹面氢氧化镍纳米立方体的合成及其在高性能混合电容器中的应用。

Concave Ni(OH) Nanocube Synthesis and Its Application in High-Performance Hybrid Capacitors.

作者信息

Cong Nan, Li Pan, Guo Xuyun, Chen Xiaojuan

机构信息

Beijing Academy of Quantum Information Sciences, Beijing 100193, China.

Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing 100089, China.

出版信息

Nanomaterials (Basel). 2023 Sep 11;13(18):2538. doi: 10.3390/nano13182538.

Abstract

The controlled synthesis of hollow structure transition metal compounds has long been a very interesting and significant research topic in the energy storage and conversion fields. Herein, an ultrasound-assisted chemical etching strategy is proposed for fabricating concave Ni(OH) nanocubes. The morphology and composition evolution of the concave Ni(OH) nanocubes suggest a possible formation mechanism. The as-synthesized Ni(OH) nanostructures used as supercapacitor electrode materials exhibit high specific capacitance (1624 F g at 2 A g) and excellent cycling stability (77% retention after 4000 cycles) due to their large specific surface area and open pathway. In addition, the corresponding hybrid capacitor (Ni(OH)//graphene) demonstrates high energy density (42.9 Wh kg at a power density of 800 W kg) and long cycle life (78% retention after 4000 cycles at 5 A g). This work offers a simple and economic approach for obtaining concave Ni(OH) nanocubes for energy storage and conversion.

摘要

长期以来,中空结构过渡金属化合物的可控合成一直是储能和转换领域中一个非常有趣且重要的研究课题。在此,我们提出了一种超声辅助化学蚀刻策略来制备凹面氢氧化镍纳米立方体。凹面氢氧化镍纳米立方体的形貌和成分演变揭示了一种可能的形成机制。所合成的氢氧化镍纳米结构用作超级电容器电极材料时,由于其大的比表面积和开放的通道,表现出高比电容(在2 A g时为1624 F g)和优异的循环稳定性(4000次循环后保留率为77%)。此外,相应的混合电容器(氢氧化镍//石墨烯)在功率密度为800 W kg时表现出高能量密度(42.9 Wh kg)和长循环寿命(在5 A g下4000次循环后保留率为78%)。这项工作为获得用于储能和转换的凹面氢氧化镍纳米立方体提供了一种简单且经济的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0256/10537329/209581a688ee/nanomaterials-13-02538-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验