文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于局部应用和药物持续释放的羟丙基甲基纤维素生物粘附水凝胶:聚乙烯吡咯烷酮对水凝胶物理机械性能的影响

Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel.

作者信息

Pan Patrick, Svirskis Darren, Waterhouse Geoffrey I N, Wu Zimei

机构信息

School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.

School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand.

出版信息

Pharmaceutics. 2023 Sep 21;15(9):2360. doi: 10.3390/pharmaceutics15092360.


DOI:10.3390/pharmaceutics15092360
PMID:37765328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10537184/
Abstract

Hydrogels are homogeneous three-dimensional polymeric networks capable of holding large amounts of water and are widely used in topical formulations. Herein, the physicomechanical, rheological, bioadhesive, and drug-release properties of hydrogels containing hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined, and the intermolecular interactions between the polymers were explored. A three-level factorial design was used to form HPMC-PVP binary hydrogels. The physicomechanical properties of the binary hydrogels alongside the homopolymeric HPMC hydrogels were characterized using a texture analyzer. Rheological properties of the gels were studied using a cone and plate rheometer. The bioadhesiveness of selected binary hydrogels was tested on porcine skin. Hydrophilic benzophenone-4 was loaded into both homopolymeric and binary gels, and drug-release profiles were investigated over 24 h at 33 °C. Fourier transform infrared spectroscopy (FTIR) was used to understand the inter-molecular drug-gel interactions. Factorial design analysis supported the dominant role of the HPMC in determining the gel properties, rather than the PVP, with the effect of both polymer concentrations being non-linear. The addition of PVP to the HPMC gels improved adhesiveness without significantly affecting other properties such as hardness, shear-thinning feature, and viscosity, thereby improving bioadhesiveness for sustained skin retention without negatively impacting cosmetic acceptability or ease of use. The release of benzophenone-4 in the HPMC hydrogels followed zero-order kinetics, with benzophenone-4 release being significantly retarded by the presence of PVP, likely due to intermolecular interactions between the drug and the PVP polymer, as confirmed by the FTIR. The HPMC-PVP binary hydrogels demonstrate strong bioadhesiveness resulting from the addition of PVP with desirable shear-thinning properties that allow the formulation to have extended skin-retention times. The developed HPMC-PVP binary hydrogel is a promising sustained-release platform for topical drug delivery.

摘要

水凝胶是能够容纳大量水分的均质三维聚合物网络,广泛应用于局部制剂中。在此,研究了含有羟丙基甲基纤维素(HPMC)和聚乙烯吡咯烷酮(PVP)的水凝胶的物理力学、流变学、生物粘附性和药物释放特性,并探讨了聚合物之间的分子间相互作用。采用三级析因设计来制备HPMC-PVP二元水凝胶。使用质地分析仪对二元水凝胶以及均聚物HPMC水凝胶的物理力学性能进行了表征。使用锥板流变仪研究了凝胶的流变学特性。在猪皮肤上测试了所选二元水凝胶的生物粘附性。将亲水性二苯甲酮-4负载到均聚物凝胶和二元凝胶中,并在33℃下研究了24小时内的药物释放曲线。使用傅里叶变换红外光谱(FTIR)来了解分子间药物-凝胶相互作用。析因设计分析支持HPMC在决定凝胶特性方面起主导作用,而非PVP,两种聚合物浓度的影响均呈非线性。向HPMC凝胶中添加PVP可提高粘附性,而不会显著影响其他特性,如硬度、剪切变稀特性和粘度,从而提高生物粘附性以实现皮肤的持续保留,而不会对化妆品可接受性或易用性产生负面影响。HPMC水凝胶中二苯甲酮-4的释放遵循零级动力学,PVP的存在显著延迟了二苯甲酮-4的释放,这可能是由于药物与PVP聚合物之间的分子间相互作用,FTIR证实了这一点。HPMC-PVP二元水凝胶由于添加了PVP而表现出很强的生物粘附性,并具有理想的剪切变稀特性,这使得制剂具有延长的皮肤保留时间。所开发的HPMC-PVP二元水凝胶是一种很有前途的局部药物递送缓释平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/53adb6b6513f/pharmaceutics-15-02360-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/e9f3909627da/pharmaceutics-15-02360-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/e41c1d4a4220/pharmaceutics-15-02360-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/a5e110587e35/pharmaceutics-15-02360-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/2e2abcd3114a/pharmaceutics-15-02360-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/cd6fb5a599f7/pharmaceutics-15-02360-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/fd474391cd45/pharmaceutics-15-02360-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/3205973b582e/pharmaceutics-15-02360-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/bfaf1cd99872/pharmaceutics-15-02360-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/ade208e50d7f/pharmaceutics-15-02360-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/4c761db2345f/pharmaceutics-15-02360-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/53adb6b6513f/pharmaceutics-15-02360-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/e9f3909627da/pharmaceutics-15-02360-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/e41c1d4a4220/pharmaceutics-15-02360-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/a5e110587e35/pharmaceutics-15-02360-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/2e2abcd3114a/pharmaceutics-15-02360-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/cd6fb5a599f7/pharmaceutics-15-02360-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/fd474391cd45/pharmaceutics-15-02360-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/3205973b582e/pharmaceutics-15-02360-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/bfaf1cd99872/pharmaceutics-15-02360-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/ade208e50d7f/pharmaceutics-15-02360-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/4c761db2345f/pharmaceutics-15-02360-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1a/10537184/53adb6b6513f/pharmaceutics-15-02360-g011.jpg

相似文献

[1]
Hydroxypropyl Methylcellulose Bioadhesive Hydrogels for Topical Application and Sustained Drug Release: The Effect of Polyvinylpyrrolidone on the Physicomechanical Properties of Hydrogel.

Pharmaceutics. 2023-9-21

[2]
Effect of Carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels.

AAPS PharmSciTech. 2000-8-17

[3]
Rheological and mucoadhesive characterization of polymeric systems composed of poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone), designed as platforms for topical drug delivery.

J Pharm Sci. 2003-5

[4]
Hydrogel formulations containing non-ionic polymers for topical delivery of bacteriophages.

Int J Pharm. 2021-8-10

[5]
3D printing of extended-release tablets of theophylline using hydroxypropyl methylcellulose (HPMC) hydrogels.

Int J Pharm. 2020-12-15

[6]
Enhanced local anesthetic action of mepivacaine from the bioadhesive gels.

Pak J Pharm Sci. 2011-1

[7]
Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose.

Int J Biol Macromol. 2022-6-1

[8]
Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.

Pharm Dev Technol. 2009

[9]
Formulation and characterisation of tetracycline-containing bioadhesive polymer networks designed for the treatment of periodontal disease.

Curr Drug Deliv. 2004-1

[10]
Influence of hydroxypropyl methylcellulose mixture, apparent viscosity, and tablet hardness on drug release using a 2(3) full factorial design.

Drug Dev Ind Pharm. 2002-5

引用本文的文献

[1]
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications.

Polymers (Basel). 2025-7-24

[2]
Exploring bioadhesion: insight on innovative strategies to investigate bioadhesive scaffolds.

Int J Pharm X. 2025-7-15

[3]
Hydroxypropyl Methylcellulose-A Key Excipient in Pharmaceutical Drug Delivery Systems.

Pharmaceutics. 2025-6-16

[4]
Thermosensitive Mucoadhesive Intranasal In Situ Gel of Risperidone for Nose-to-Brain Targeting: Physiochemical and Pharmacokinetics Study.

Pharmaceuticals (Basel). 2025-6-11

[5]
Development and Evaluation of Cellulosic Esters Solvent Removal-Induced In Situ Matrices for Loading Antibiotic Drug for Periodontitis Treatment.

Polymers (Basel). 2025-6-2

[6]
Formulation and Characterization of Teicoplanin Niosomal Gel for Healing Chronic Wounds Infected with Methicillin-Resistant (MRSA).

Gels. 2025-3-22

[7]
Hydrogel Delivery Systems for Biological Active Substances: Properties and the Role of HPMC as a Carrier.

Molecules. 2025-3-18

[8]
Therapeutic Potential of Injectable Supramolecular Hydrogels With Neural Stem Cell Exosomes and Hydroxypropyl Methylcellulose for Post-Stroke Neurological Recovery.

Int J Nanomedicine. 2025-2-21

[9]
Intranasal Mucoadhesive In Situ Gel of Glibenclamide-Loaded Bilosomes for Enhanced Therapeutic Drug Delivery to the Brain.

Pharmaceutics. 2025-2-4

[10]
Synergistic enhancement of spinal fusion in preclinical models using low-dose rhBMP-2 and stromal vascular fraction in an injectable hydrogel composite.

Mater Today Bio. 2024-12-6

本文引用的文献

[1]
A simple and reliable isocratic high-performance chromatographic assay for the simultaneous determination of hydrophilic benzophenone-4 and lipophilic octocrylene in sunscreens.

Int J Cosmet Sci. 2023-8

[2]
In situ gelling drug delivery systems for topical drug delivery.

Eur J Pharm Biopharm. 2023-3

[3]
Development of a Standardized Method for Measuring Bioadhesion and Mucoadhesion That Is Applicable to Various Pharmaceutical Dosage Forms.

Pharmaceutics. 2022-9-21

[4]
Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties.

Polymers (Basel). 2022-9-1

[5]
Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers.

Gels. 2022-6-16

[6]
One-Pot and Green Preparation of Extract/Silver Nanoparticles/Polyvinylpyrrolidone Spray-On Dressing.

Polymers (Basel). 2022-5-29

[7]
Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison.

Pharmaceutics. 2021-11-26

[8]
Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels.

Sci Rep. 2021-11-8

[9]
Strategies to Develop a Suitable Formulation for Inflammatory Skin Disease Treatment.

Int J Mol Sci. 2021-6-4

[10]
Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction.

ACS Biomater Sci Eng. 2021-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索