Veloso-Fernández Antonio, Ruiz-Rubio Leire, Yugueros Imanol, Moreno-Benítez M Isabel, Laza José Manuel, Vilas-Vilela José Luis
Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain.
BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
Polymers (Basel). 2023 Sep 12;15(18):3737. doi: 10.3390/polym15183737.
In recent decades, the use of thermoset epoxy resins (ER) has spread to countless applications due to their mechanical properties, heat resistance and stability. However, these ERs are neither biodegradable nor recyclable due to their permanent crosslinked networks and usually, they are synthesized from fossil and toxic precursors. Therefore, reducing its consumption is of vital importance to the environment. On the one hand, the solution to the recyclability problems of epoxy resins can be achieved through the use of vitrimers, which have thermoset properties and can be recycled as thermoplastic materials. On the other hand, vitrimers can be made from natural sources, reducing their toxicity. In this work, a sustainable epoxy vitrimer has been efficiently synthesized, VESOV, by curing epoxidized soybean oil (ESO) with a new vanillin-derived Schiff base (VSB) dynamic hardener, aliphatic diamine (1,4-butanediamine, BDA) and using 1,2-dimethylimidazole (DMI) as an accelerator. Likewise, using the same synthesized VSB agent, a commercial epoxy resin has also been cured and characterized as ESO. Finally, different percentages (30, 50 and 70 wt%) of the same ER have been included in the formulation of VESOV, demonstrating that only including 30 wt% of ER in the formulation is able to improve the thermo-mechanical properties, maintaining the VESOV's inherent reprocessability or recyclability. In short, this is the first approach to achieve a new material that can be postulated in the future as a replacement for current commercial epoxy resins, although it still requires a minimum percentage of RE in the formulation, it makes it possible to recycle the material while maintaining good mechanical properties.
近几十年来,热固性环氧树脂(ER)因其机械性能、耐热性和稳定性而在无数应用中得到广泛应用。然而,由于其永久交联网络,这些环氧树脂既不可生物降解也不可回收利用,而且通常由化石和有毒前体合成。因此,减少其消耗对环境至关重要。一方面,环氧树脂可回收性问题的解决方案可以通过使用玻璃态高聚物来实现,玻璃态高聚物具有热固性,并且可以作为热塑性材料进行回收。另一方面,玻璃态高聚物可以由天然来源制成,从而降低其毒性。在这项工作中,通过用一种新型香草醛衍生的席夫碱(VSB)动态固化剂、脂肪族二胺(1,4-丁二胺,BDA)固化环氧化大豆油(ESO)并使用1,2-二甲基咪唑(DMI)作为促进剂,高效合成了一种可持续的环氧玻璃态高聚物VESOV。同样,使用相同合成的VSB试剂,也对一种商业环氧树脂进行了固化,并将其表征为ESO。最后,在VESOV配方中加入了不同百分比(30%、50%和70%重量)的相同环氧树脂,结果表明,在配方中仅加入30%重量的环氧树脂就能改善热机械性能,同时保持VESOV固有的可再加工性或可回收性。简而言之,这是实现一种新材料的首次尝试,这种新材料未来有可能被假定为替代当前商业环氧树脂的材料,尽管在配方中仍需要最低百分比的环氧树脂,但它使得在保持良好机械性能的同时能够回收该材料。