Suppr超能文献

一种变电站设备柜中与接线端子相关的不规则部件识别方法。

An Identification Method for Irregular Components Related to Terminal Blocks in Equipment Cabinet of Power Substation.

作者信息

Cao Weiguo, Chen Zhong, Deng Xuhui, Wu Congying, Li Tiecheng

机构信息

School of Electrical Engineering, Southeast University, Nanjing 210096, China.

Fuzhou Power Supply Branch, State Grid Fujian Power Company, Fuzhou 350001, China.

出版信息

Sensors (Basel). 2023 Sep 7;23(18):7739. doi: 10.3390/s23187739.

Abstract

Despite the continuous advancement of intelligent power substations, the terminal block components within equipment cabinet inspection work still often require loads of personnel. The repetitive documentary works not only lack efficiency but are also susceptible to inaccuracies introduced by substation personnel. To resolve the problem of lengthy, time-consuming inspections, a terminal block component detection and identification method is presented in this paper. The identification method is a multi-stage system that incorporates a streamlined version of You Only Look Once version 7 (YOLOv7), a fusion of YOLOv7 and differential binarization (DB), and the utilization of PaddleOCR. Firstly, the YOLOv7 Area-Oriented (YOLOv7-AO) model is developed to precisely locate the complete region of terminal blocks within substation scene images. The compact area extraction model rapidly cuts out the valid proportion of the input image. Furthermore, the DB segmentation head is integrated into the YOLOv7 model to effectively handle the densely arranged, irregularly shaped block components. To detect all the components within a target electrical cabinet of substation equipment, the YOLOv7 model with a differential binarization attention head (YOLOv7-DBAH) is proposed, integrating spatial and channel attention mechanisms. Finally, a general OCR algorithm is applied to the cropped-out instances after image distortion to match and record the component's identity information. The experimental results show that the YOLOv7-AO model reaches high detection accuracy with good portability, gaining 4.45 times faster running speed. Moreover, the terminal block component detection results show that the YOLOv7-DBAH model achieves the highest evaluation metrics, increasing the F1-score from 0.83 to 0.89 and boosting the precision to over 0.91. The proposed method achieves the goal of terminal block component identification and can be applied in practical situations.

摘要

尽管智能变电站不断发展,但设备柜检查工作中的接线端子组件仍常常需要大量人力。重复性的文案工作不仅效率低下,还容易出现变电站人员引入的不准确情况。为解决检查工作冗长、耗时的问题,本文提出一种接线端子组件检测与识别方法。该识别方法是一个多阶段系统,融合了精简版的You Only Look Once版本7(YOLOv7)、YOLOv7与差分二值化(DB)的融合以及PaddleOCR的应用。首先,开发YOLOv7面向区域(YOLOv7-AO)模型,以精确确定变电站场景图像中接线端子的完整区域。紧凑区域提取模型快速裁剪出输入图像的有效部分。此外,将DB分割头集成到YOLOv7模型中,以有效处理密集排列、形状不规则的块状组件。为检测变电站设备目标电气柜内的所有组件,提出带有差分二值化注意力头的YOLOv7模型(YOLOv7-DBAH),集成了空间和通道注意力机制。最后,将通用OCR算法应用于图像畸变后的裁剪实例,以匹配和记录组件的身份信息。实验结果表明,YOLOv7-AO模型具有较高的检测精度和良好的便携性,运行速度提高了4.45倍。此外,接线端子组件检测结果表明,YOLOv7-DBAH模型实现了最高的评估指标,F1分数从0.83提高到0.89,精度提高到0.91以上。所提方法实现了接线端子组件识别的目标,可应用于实际情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef76/10535969/a5679df449a7/sensors-23-07739-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验