Suppr超能文献

一种基于改进YOLOv7的防护林带树种分类模型。

A tree species classification model based on improved YOLOv7 for shelterbelts.

作者信息

Liu Yihao, Zhao Qingzhan, Wang Xuewen, Sheng Yuhao, Tian Wenzhong, Ren Yuanyuan

机构信息

College of Information Science and Technology, Shihezi University, Shihezi, China.

Geospatial Information Engineering Research Center, Xinjiang Production and Construction Corps, Shihezi, China.

出版信息

Front Plant Sci. 2024 Jan 18;14:1265025. doi: 10.3389/fpls.2023.1265025. eCollection 2023.

Abstract

Tree species classification within shelterbelts is crucial for shelterbelt management. The large-scale satellite-based and low-altitude drone-based approaches serve as powerful tools for forest monitoring, especially in tree species classification. However, these methods face challenges in distinguishing individual tree species within complex backgrounds. Additionally, the mixed growth of trees within protective forest suffers from similar crown size among different tree species. The complex background of the shelterbelts negatively impacts the accuracy of tree species classification. The You Only Look Once (YOLO) algorithm is widely used in the field of agriculture and forestry, ie., plant and fruit identification, pest and disease detection, and tree species classification in forestry. We proposed a YOLOv7-Kmeans++_CoordConv_CBAM (YOLOv7-KCC) model for tree species classification based on drone RGB remote sensing images. Firstly, we constructed a dataset for tree species in shelterbelts and adopted data augmentation methods to mitigate overfitting due to limited training data. Secondly, the K-means++ algorithm was employed to cluster anchor boxes in the dataset. Furthermore, to enhance the YOLOv7 backbone network's Efficient Layer Aggregation Network (ELAN) module, we used Coordinate Convolution (CoordConv) replaced the ordinary 1×1 convolution. The Convolutional Block Attention Module (CBAM) was integrated into the Path Aggregation Network (PANet) structure to facilitate multiscale feature extraction and fusion, allowing the network to better capture and utilize crucial feature information. Experimental results showed that the YOLOv7-KCC model achieves a mean average precision@0.5 of 98.91%, outperforming the Faster RCNN-VGG16, Faster RCNN-Resnet50, SSD, YOLOv4, and YOLOv7 models by 5.71%, 11.75%, 5.97%, 7.86%, and 3.69%, respectively. The GFlops and Parameter values of the YOLOv7-KCC model stand at 105.07G and 143.7MB, representing an almost 5.6% increase in F1 metrics compared to YOLOv7. Therefore, the proposed YOLOv7-KCC model can effectively classify shelterbelt tree species, providing a scientific theoretical basis for shelterbelt management in Northwest China focusing on Xinjiang.

摘要

防护林带内的树种分类对于防护林带管理至关重要。基于卫星的大规模方法和基于低空无人机的方法是森林监测的有力工具,尤其是在树种分类方面。然而,这些方法在区分复杂背景中的单个树种时面临挑战。此外,防护林带内树木的混合生长存在不同树种树冠大小相似的问题。防护林带的复杂背景对树种分类的准确性产生负面影响。你只看一次(YOLO)算法在农林领域广泛应用,即植物和果实识别、病虫害检测以及林业中的树种分类。我们基于无人机RGB遥感图像提出了一种用于树种分类的YOLOv7-Kmeans++_CoordConv_CBAM(YOLOv7-KCC)模型。首先,我们构建了一个防护林带树种数据集,并采用数据增强方法来缓解由于训练数据有限导致的过拟合问题。其次,采用K-means++算法对数据集中的锚框进行聚类。此外,为了增强YOLOv7骨干网络的高效层聚合网络(ELAN)模块,我们使用坐标卷积(CoordConv)取代普通的1×1卷积。将卷积块注意力模块(CBAM)集成到路径聚合网络(PANet)结构中,以促进多尺度特征提取和融合,使网络能够更好地捕捉和利用关键特征信息。实验结果表明,YOLOv7-KCC模型的平均精度@0.5达到98.91%,分别比更快的RCNN-VGG16、更快的RCNN-Resnet50、SSD、YOLOv4和YOLOv7模型高出5.71%、11.75%、5.97%、7.86%和3.69%。YOLOv7-KCC模型的GFlops和参数值分别为105.07G和143.7MB,与YOLOv7相比,F1指标提高了近5.6%。因此,所提出的YOLOv7-KCC模型能够有效地对防护林带树种进行分类,为以新疆为重点的中国西北防护林带管理提供科学理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d081/10832270/443cda62ce4b/fpls-14-1265025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验