Suppr超能文献

OHO:用于人机物体交接的多模态、多用途数据集。

OHO: A Multi-Modal, Multi-Purpose Dataset for Human-Robot Object Hand-Over.

机构信息

Neuroinformatics and Cognitive Robotics Lab, Technische Universität Ilmenau, 98693 Ilmenau, Germany.

Group for Quality Assurance and Industrial Image Processing, Technische Universität Ilmenau, 98693 Ilmenau, Germany.

出版信息

Sensors (Basel). 2023 Sep 11;23(18):7807. doi: 10.3390/s23187807.

Abstract

In the context of collaborative robotics, handing over hand-held objects to a robot is a safety-critical task. Therefore, a robust distinction between human hands and presented objects in image data is essential to avoid contact with robotic grippers. To be able to develop machine learning methods for solving this problem, we created the OHO (Object Hand-Over) dataset of tools and other everyday objects being held by human hands. Our dataset consists of color, depth, and thermal images with the addition of pose and shape information about the objects in a real-world scenario. Although the focus of this paper is on instance segmentation, our dataset also enables training for different tasks such as 3D pose estimation or shape estimation of objects. For the instance segmentation task, we present a pipeline for automated label generation in point clouds, as well as image data. Through baseline experiments, we show that these labels are suitable for training an instance segmentation to distinguish hands from objects on a per-pixel basis. Moreover, we present qualitative results for applying our trained model in a real-world application.

摘要

在协作机器人的背景下,将手持物体交给机器人是一项安全关键任务。因此,在图像数据中对人类手和呈现的物体进行稳健区分至关重要,以避免与机器人夹具接触。为了能够开发用于解决此问题的机器学习方法,我们创建了 OHO(物体交接)数据集,其中包含人类手持工具和其他日常物体的彩色、深度和热图像,并增加了物体在真实场景中的姿态和形状信息。尽管本文的重点是实例分割,但我们的数据集还可以用于训练不同的任务,例如 3D 姿态估计或物体形状估计。对于实例分割任务,我们提出了一种用于在点云中以及图像数据中自动生成标签的流水线。通过基准实验,我们表明这些标签适用于训练实例分割,以便根据像素区分手和物体。此外,我们还展示了在实际应用中应用我们训练的模型的定性结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af0e/10537499/10040391e38b/sensors-23-07807-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验