Williams Kane C, Mallaburn Michael J, Gagola Martin, O'Toole Michael D, Jones Rob, Peyton Anthony J
Department of Electrical and Electroninc Engeering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
Magnapower Equipment Ltd., A1, Harris Business Park, Hanbury Rd., Stoke Prior, Bromsgrove B60 4FG, UK.
Sensors (Basel). 2023 Sep 12;23(18):7837. doi: 10.3390/s23187837.
Recycling aluminium is essential for a circular economy, reducing the energy required and greenhouse gas emissions compared to extraction from virgin ore. A 'Twitch' waste stream is a mix of shredded wrought and cast aluminium. Wrought must be separated before recycling to prevent contamination from the impurities present in the cast. In this paper, we demonstrate magnetic induction spectroscopy (MIS) to classify wrought from cast aluminium. MIS measures the scattering of an oscillating magnetic field to characterise a material. The conductivity difference between cast and wrought makes it a promising choice for MIS. We first show how wrought can be classified on a laboratory system with 89.66% recovery and 94.96% purity. We then implement the first industrial MIS material recovery solution for sorting Twitch, combining our sensors with a commercial-scale separator system. The industrial system did not reflect the laboratory results. The analysis found three areas of reduced performance: (1) metal pieces correctly classified by one sensor were misclassified by adjacent sensors that only captured part of the metal; (2) the metal surface facing the sensor can produce different classification results; and (3) the choice of machine learning algorithm is significant with artificial neural networks producing the best results on unseen data.
回收铝对于循环经济至关重要,与从原生矿石中提取相比,可减少所需能源和温室气体排放。“Twitch”废物流是切碎的变形铝和铸造铝的混合物。在回收之前,必须将变形铝分离出来,以防止铸件中的杂质造成污染。在本文中,我们展示了利用磁感应光谱法(MIS)对变形铝和铸造铝进行分类。MIS通过测量振荡磁场的散射来表征材料。铸造铝和变形铝之间的电导率差异使其成为MIS的一个有前景的选择。我们首先展示了如何在实验室系统上对变形铝进行分类,回收率为89.66%,纯度为94.96%。然后,我们为Twitch分选实施了首个工业MIS材料回收解决方案,将我们的传感器与商业规模的分离系统相结合。工业系统并未反映出实验室结果。分析发现了性能降低的三个方面:(1)一个传感器正确分类的金属片被相邻仅捕获部分金属的传感器误分类;(2)面向传感器的金属表面会产生不同的分类结果;(3)机器学习算法的选择很重要,人工神经网络在未见过的数据上产生的结果最佳。