Suppr超能文献

基于深度学习的颅内压信号亚峰指定自动化框架。

A Deep Learning-Based Automated Framework for Subpeak Designation on Intracranial Pressure Signals.

机构信息

Sophysa, 91400 Orsay, France.

DISC Department, FEMTO-ST, Université de Franche-Comté, 25000 Besançon, France.

出版信息

Sensors (Basel). 2023 Sep 12;23(18):7834. doi: 10.3390/s23187834.

Abstract

The intracranial pressure (ICP) signal, as monitored on patients in intensive care units, contains pulses of cardiac origin, where P1 and P2 subpeaks can often be observed. When calculable, the ratio of their relative amplitudes is an indicator of the patient's cerebral compliance. This characterization is particularly informative for the overall state of the cerebrospinal system. The aim of this study is to develop and assess the performances of a deep learning-based pipeline for P2/P1 ratio computation that only takes a raw ICP signal as an input. The output P2/P1 ratio signal can be discontinuous since P1 and P2 subpeaks are not always visible. The proposed pipeline performs four tasks, namely (i) heartbeat-induced pulse detection, (ii) pulse selection, (iii) P1 and P2 designation, and (iv) signal smoothing and outlier removal. For tasks (i) and (ii), the performance of a recurrent neural network is compared to that of a convolutional neural network. The final algorithm is evaluated on a 4344-pulse testing dataset sampled from 10 patient recordings. Pulse selection is achieved with an area under the curve of 0.90, whereas the subpeak designation algorithm identifies pulses with a P2/P1 ratio > 1 with 97.3% accuracy. Although it still needs to be evaluated on a larger number of labeled recordings, our automated P2/P1 ratio calculation framework appears to be a promising tool that can be easily embedded into bedside monitoring devices.

摘要

颅内压 (ICP) 信号在重症监护病房的患者中进行监测,其中包含源自心脏的脉冲,通常可以观察到 P1 和 P2 次峰。当可计算时,它们相对幅度的比值是患者脑顺应性的指标。这种特征对于脑脊液系统的整体状态特别有意义。本研究的目的是开发和评估一种基于深度学习的 P2/P1 比计算管道的性能,该管道仅将原始 ICP 信号作为输入。由于 P1 和 P2 次峰并不总是可见,因此输出的 P2/P1 比信号可能是不连续的。所提出的管道执行四项任务,即 (i) 心跳诱导脉冲检测,(ii) 脉冲选择,(iii) P1 和 P2 指定,以及 (iv) 信号平滑和异常值去除。对于任务 (i) 和 (ii),比较了递归神经网络和卷积神经网络的性能。最终算法在从 10 个患者记录中采样的 4344 个脉冲测试数据集上进行了评估。曲线下面积达到 0.90,实现了脉冲选择,而次峰指定算法以 97.3%的准确率识别出 P2/P1 比>1 的脉冲。尽管它仍需要在更多带标记的记录上进行评估,但我们的自动 P2/P1 比计算框架似乎是一种很有前途的工具,可以轻松嵌入床边监测设备中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c34/10537288/8ec908253502/sensors-23-07834-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验