Suppr超能文献

用于中风后康复的日常活动识别系统的开发与测试。

Development and Testing of a Daily Activity Recognition System for Post-Stroke Rehabilitation.

作者信息

Proffitt Rachel, Ma Mengxuan, Skubic Marjorie

机构信息

Department of Occupational Therapy, University of Missouri, Columbia, MO 65211, USA.

MathWorks, Inc., Natick, MA 01760, USA.

出版信息

Sensors (Basel). 2023 Sep 14;23(18):7872. doi: 10.3390/s23187872.

Abstract

Those who survive the initial incidence of a stroke experience impacts on daily function. As a part of the rehabilitation process, it is essential for clinicians to monitor patients' health status and recovery progress accurately and consistently; however, little is known about how patients function in their own homes. Therefore, the goal of this study was to develop, train, and test an algorithm within an ambient, in-home depth sensor system that can classify and quantify home activities of individuals post-stroke. We developed the Daily Activity Recognition and Assessment System (DARAS). A daily action logger was implemented with a Foresite Healthcare depth sensor. Daily activity data were collected from seventeen post-stroke participants' homes over three months. Given the extensive amount of data, only a portion of the participants' data was used for this specific analysis. An ensemble network for activity recognition and temporal localization was developed to detect and segment the clinically relevant actions from the recorded data. The ensemble network, which learns rich spatial-temporal features from both depth and skeletal joint data, fuses the prediction outputs from a customized 3D convolutional-de-convolutional network, customized region convolutional 3D network, and a proposed region hierarchical co-occurrence network. The per-frame precision and per-action precision were 0.819 and 0.838, respectively, on the test set. The outcomes from the DARAS can help clinicians to provide more personalized rehabilitation plans that benefit patients.

摘要

那些在中风初次发作中幸存下来的人会在日常功能方面受到影响。作为康复过程的一部分,临床医生准确且持续地监测患者的健康状况和恢复进展至关重要;然而,对于患者在自己家中的功能状况却知之甚少。因此,本研究的目标是在一个环境式家庭深度传感器系统中开发、训练并测试一种算法,该算法能够对中风后个体的家庭活动进行分类和量化。我们开发了日常活动识别与评估系统(DARAS)。使用Foresite Healthcare深度传感器实现了一个日常动作记录器。在三个月的时间里,从17名中风后参与者的家中收集了日常活动数据。鉴于数据量庞大,仅使用了部分参与者的数据进行此特定分析。开发了一个用于活动识别和时间定位的集成网络,以从记录的数据中检测和分割出临床相关动作。该集成网络从深度和骨骼关节数据中学习丰富的时空特征,融合了来自定制的3D卷积-反卷积网络、定制的区域卷积3D网络以及所提出的区域分层共现网络的预测输出。在测试集上,每帧精度和每个动作的精度分别为0.819和0.838。DARAS的结果可以帮助临床医生提供更有利于患者的个性化康复计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验