Suppr超能文献

PIPTO:基于三轴加速度计的精确惯性阈值跌倒检测管道。

PIPTO: Precise Inertial-Based Pipeline for Threshold-Based Fall Detection Using Three-Axis Accelerometers.

机构信息

Department of Production and Management Engineering, Democritus University of Thrace, 12 Vas. Sophias, GR-671 32 Xanthi, Greece.

出版信息

Sensors (Basel). 2023 Sep 18;23(18):7951. doi: 10.3390/s23187951.

Abstract

After traffic-related incidents, falls are the second cause of human death, presenting the highest percentage among the elderly. Aiming to address this problem, the research community has developed methods built upon different sensors, such as wearable, ambiance, or hybrid, and various techniques, such as those that are machine learning- and heuristic based. Concerning the models used in the former case, they classify the input data between fall and no fall, and specific data dimensions are required. Yet, when algorithms that adopt heuristic techniques, mainly using thresholds, are combined with the previous models, they reduce the computational cost. To this end, this article presents a pipeline for detecting falls through a threshold-based technique over the data provided by a three-axis accelerometer. This way, we propose a low-complexity system that can be adopted from any acceleration sensor that receives information at different frequencies. Moreover, the input lengths can differ, while we achieve to detect multiple falls in a time series of sum vector magnitudes, providing the specific time range of the fall. As evaluated on several datasets, our pipeline reaches high performance results at 90.40% and 91.56% sensitivity on MMsys and KFall, respectively, while the generated specificity is 93.96% and 85.90%. Lastly, aiming to facilitate the research community, our framework, entitled PIPTO (drawing inspiration from the Greek verb "πι´πτω", signifying "to fall"), is open sourced in Python and C.

摘要

在交通相关事故之后,跌倒成为人类死亡的第二大原因,在老年人中占比最高。为了解决这个问题,研究界已经开发出了基于不同传感器的方法,例如可穿戴、环境或混合传感器,以及各种技术,例如基于机器学习和启发式的技术。关于前者所使用的模型,它们将输入数据分为跌倒和未跌倒两类,并且需要特定的数据维度。然而,当采用启发式技术的算法与上述模型结合使用时,主要通过阈值来实现,它们可以降低计算成本。为此,本文提出了一种通过基于阈值的技术来检测跌倒的管道,该技术使用三轴加速度计提供的数据。这样,我们提出了一个低复杂度的系统,可以通过任何接收不同频率信息的加速度传感器来采用。此外,输入长度可以不同,而我们则实现了在和向量幅度的时间序列中检测多个跌倒,提供跌倒的具体时间范围。在多个数据集上进行评估,我们的管道在 MMsys 和 KFall 上的灵敏度分别达到了 90.40%和 91.56%,而生成的特异性分别为 93.96%和 85.90%。最后,为了方便研究界,我们的框架名为 PIPTO(灵感来自希腊动词 "πι´πτω",意为 "跌倒"),以 Python 和 C 语言开源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e0/10534597/a21ec0e4bbec/sensors-23-07951-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验