文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用红外热成像技术对 B2C 网站用户情感体验进行分类。

Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging.

机构信息

School of Mechanical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.

School of Instrument Science and Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China.

出版信息

Sensors (Basel). 2023 Sep 20;23(18):7991. doi: 10.3390/s23187991.


DOI:10.3390/s23187991
PMID:37766045
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10534612/
Abstract

The acquisition of physiological signals for analyzing emotional experiences has been intrusive, and potentially yields inaccurate results. This study employed infrared thermal images (IRTIs), a noninvasive technique, to classify user emotional experiences while interacting with business-to-consumer (B2C) websites. By manipulating the usability and aesthetics of B2C websites, the facial thermal images of 24 participants were captured as they engaged with the different websites. Machine learning techniques were leveraged to classify their emotional experiences, with participants' self-assessments serving as the ground truth. The findings revealed significant fluctuations in emotional valence, while the participants' arousal levels remained consistent, enabling the categorization of emotional experiences into positive and negative states. The support vector machine (SVM) model performed well in distinguishing between baseline and emotional experiences. Furthermore, this study identified key regions of interest (ROIs) and effective classification features in machine learning. These findings not only established a significant connection between user emotional experiences and IRTIs but also broadened the research perspective on the utility of IRTIs in the field of emotion analysis.

摘要

获取用于分析情感体验的生理信号一直具有侵入性,并且可能产生不准确的结果。本研究采用了非侵入性技术——红外热成像(IRTIs),来对用户在与企业对消费者(B2C)网站交互时的情感体验进行分类。通过操纵 B2C 网站的可用性和美观性,当 24 名参与者与不同的网站进行交互时,我们捕捉了他们的面部热图像。我们利用机器学习技术对他们的情感体验进行分类,参与者的自我评估作为基准。研究结果显示,情感效价有显著波动,而参与者的唤醒水平保持一致,从而能够将情感体验分为积极和消极状态。支持向量机(SVM)模型在区分基线和情感体验方面表现良好。此外,本研究还确定了机器学习中感兴趣的关键区域(ROIs)和有效分类特征。这些发现不仅在用户情感体验和 IRTIs 之间建立了重要联系,还拓宽了 IRTIs 在情感分析领域的应用研究视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/fecdf10c2533/sensors-23-07991-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/0deed27179aa/sensors-23-07991-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/360b2bbee381/sensors-23-07991-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/9a52be0ebdf4/sensors-23-07991-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/a1acf2bca3cc/sensors-23-07991-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/a994fc6f2de8/sensors-23-07991-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/5781bbe45237/sensors-23-07991-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/8a0dfe35aea8/sensors-23-07991-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/fecdf10c2533/sensors-23-07991-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/0deed27179aa/sensors-23-07991-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/360b2bbee381/sensors-23-07991-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/9a52be0ebdf4/sensors-23-07991-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/a1acf2bca3cc/sensors-23-07991-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/a994fc6f2de8/sensors-23-07991-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/5781bbe45237/sensors-23-07991-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/8a0dfe35aea8/sensors-23-07991-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dab/10534612/fecdf10c2533/sensors-23-07991-g008.jpg

相似文献

[1]
Classification of User Emotional Experiences on B2C Websites Utilizing Infrared Thermal Imaging.

Sensors (Basel). 2023-9-20

[2]
The facial expression of schizophrenic patients applied with infrared thermal facial image sequence.

BMC Psychiatry. 2017-6-24

[3]
Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.

Neuroimage. 2018-10-23

[4]
Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults.

PLoS One. 2016-1-13

[5]
Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

[6]
Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.

Annu Int Conf IEEE Eng Med Biol Soc. 2013

[7]
An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.

Sensors (Basel). 2022-12-4

[8]
Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: a comparative study.

J Integr Neurosci. 2014-3

[9]
Emotion analysis in children through facial emissivity of infrared thermal imaging.

PLoS One. 2019-3-20

[10]
Assessment of emotional states in EEG signals using multi-frequency power spectrum and functional connectivity patterns.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

本文引用的文献

[1]
Analysis of Facial Occlusion Challenge in Thermal Images for Human Affective State Recognition.

Sensors (Basel). 2023-3-27

[2]
Towards a Contactless Stress Classification Using Thermal Imaging.

Sensors (Basel). 2022-1-27

[3]
Driver drowsiness detection using facial thermal imaging in a driving simulator.

Proc Inst Mech Eng H. 2022-1

[4]
EEG Channel Correlation Based Model for Emotion Recognition.

Comput Biol Med. 2021-9

[5]
Are All "Basic Emotions" Emotions? A Problem for the (Basic) Emotions Construct.

Perspect Psychol Sci. 2022-1

[6]
The emotion-facial expression link: evidence from human and automatic expression recognition.

Psychol Res. 2021-11

[7]
Time-Frequency Representation and Convolutional Neural Network-Based Emotion Recognition.

IEEE Trans Neural Netw Learn Syst. 2021-7

[8]
Investigating appraisal-driven facial expression and inference in emotion communication.

Emotion. 2021-2

[9]
Visual and Thermal Image Processing for Facial Specific Landmark Detection to Infer Emotions in a Child-Robot Interaction.

Sensors (Basel). 2019-6-26

[10]
Emotion analysis in children through facial emissivity of infrared thermal imaging.

PLoS One. 2019-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索