Suppr超能文献

个体化实验室医学在数字健康时代:最新进展与未来挑战。

Personalized laboratory medicine in the digital health era: recent developments and future challenges.

机构信息

Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Türkiye.

Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy.

出版信息

Clin Chem Lab Med. 2023 Sep 28;62(3):402-409. doi: 10.1515/cclm-2023-0808. Print 2024 Feb 26.

Abstract

Interpretation of laboratory data is a comparative procedure and requires reliable reference data, which are mostly derived from population data but used for individuals in conventional laboratory medicine. Using population data as a "" for individuals has generated several problems related to diagnosing, monitoring, and treating single individuals. This issue can be resolved by using data from individuals' repeated samples, as their personal reference, thus needing that laboratory data be personalized. The modern laboratory information system (LIS) can store the results of repeated measurements from millions of individuals. These data can then be analyzed to generate a variety of personalized reference data sets for numerous comparisons. In this manuscript, we redefine the term "personalized laboratory medicine" as the practices based on individual-specific samples and data. These reflect their unique biological characteristics, encompassing omics data, clinical chemistry, endocrinology, hematology, coagulation, and within-person biological variation of all laboratory data. It also includes information about individuals' health behavior, chronotypes, and all statistical algorithms used to make precise decisions. This approach facilitates more accurate diagnosis, monitoring, and treatment of diseases for each individual. Furthermore, we explore recent advancements and future challenges of personalized laboratory medicine in the context of the digital health era.

摘要

实验室数据的解读是一种比较性的程序,需要可靠的参考数据,这些数据主要来自于人群数据,但在传统的实验室医学中用于个体。将人群数据用作个体的“金标准”产生了与诊断、监测和治疗个体相关的几个问题。这个问题可以通过使用个体重复样本的数据来解决,作为他们的个人参考,因此需要将实验室数据个性化。现代实验室信息系统(LIS)可以存储来自数百万个体的重复测量结果。然后可以对这些数据进行分析,为大量比较生成各种个性化的参考数据集。在本文中,我们将“个体化实验室医学”一词重新定义为基于个体特异性样本和数据的实践。这些反映了他们独特的生物学特征,包括组学数据、临床化学、内分泌学、血液学、凝血以及所有实验室数据的个体内生物学变异。它还包括有关个体健康行为、昼夜节律和用于做出精确决策的所有统计算法的信息。这种方法有助于为每个个体更准确地诊断、监测和治疗疾病。此外,我们还探讨了个体化实验室医学在数字健康时代的最新进展和未来挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验