Moon Hye Won, Wang Feng, Bhattacharyya Kalishankar, Planas Oriol, Leutzsch Markus, Nöthling Nils, Auer Alexander A, Cornella Josep
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202313578. doi: 10.1002/anie.202313578. Epub 2023 Nov 6.
Organobismuth-catalyzed transfer hydrogenation has recently been disclosed as an example of low-valent Bi redox catalysis. However, its mechanistic details have remained speculative. Herein, we report experimental and computational studies that provide mechanistic insights into a Bi-catalyzed transfer hydrogenation of azoarenes using p-trifluoromethylphenol (4) and pinacolborane (5) as hydrogen sources. A kinetic analysis elucidated the rate orders in all components in the catalytic reaction and determined that 1 a (2,6-bis[N-(tert-butyl)iminomethyl]phenylbismuth) is the resting state. In the transfer hydrogenation of azobenzene using 1 a and 4, an equilibrium between 1 a and 1 a ⋅ [OAr] (Ar=p-CF -C H ) is observed, and its thermodynamic parameters are established through variable-temperature NMR studies. Additionally, pK -gated reactivity is observed, validating the proton-coupled nature of the transformation. The ensuing 1 a ⋅ [OAr] is crystallographically characterized, and shown to be rapidly reduced to 1 a in the presence of 5. DFT calculations indicate a rate-limiting transition state in which the initial N-H bond is formed via concerted proton transfer upon nucleophilic addition of 1 a to a hydrogen-bonded adduct of azobenzene and 4. These studies guided the discovery of a second-generation Bi catalyst, the rate-limiting transition state of which is lower in energy, leading to catalytic transfer hydrogenation at lower catalyst loadings and at cryogenic temperature.
有机铋催化的转移氢化反应最近被披露为低价铋氧化还原催化的一个例子。然而,其机理细节仍属推测。在此,我们报告了实验和计算研究,这些研究为使用对三氟甲基苯酚(4)和频哪醇硼烷(5)作为氢源的铋催化偶氮芳烃转移氢化反应提供了机理见解。动力学分析阐明了催化反应中所有组分的反应级数,并确定1 a(2,6-双[N-(叔丁基)亚氨基甲基]苯基铋)为静止状态。在使用1 a和4对偶氮苯进行转移氢化反应时,观察到1 a与1 a ⋅ [OAr](Ar = p-CF₃-C₆H₄)之间的平衡,并通过变温核磁共振研究确定了其热力学参数。此外,观察到pKa门控反应性,验证了该转化的质子耦合性质。随后对1 a ⋅ [OAr]进行了晶体学表征,并表明在5存在下它会迅速还原为1 a。密度泛函理论计算表明存在一个速率限制过渡态,其中最初的N-H键是在1 a亲核加成到偶氮苯与4的氢键加合物时通过协同质子转移形成的。这些研究指导发现了第二代铋催化剂,其速率限制过渡态能量较低,从而能够在较低催化剂负载量和低温下实现催化转移氢化反应。