Suppr超能文献

基于 GIS 的多准则和人工神经网络 (ANN) 研究评估布加拉浅层含水层 (突尼斯中部) 的地下水脆弱性和污染危害:对通用和改进 DRASTIC 模型的批判性回顾。

GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models.

机构信息

King Abdulaziz University, Faculty of Earth Sciences, Department of Hydrogeology, Jeddah, Saudi Arabia; University of Sfax, Faculty of Sciences of Sfax, Department of Earth Sciences & Research Laboratory of Energy, Water and Environment, Tunisia.

University of Carthage, ISET, Borj Cedria, Research Laboratory of Sciences and Environmental Technologies, Tunisia.

出版信息

J Contam Hydrol. 2023 Nov;259:104245. doi: 10.1016/j.jconhyd.2023.104245. Epub 2023 Sep 20.

Abstract

Groundwater vulnerability and pollution hazard in the Braga shallow aquifer were assessed through an integrated GIS-based multicriteria analysis and Artificial Neural Network (ANN) approach, using DRASTIC and DRASTIC-LU models. The DRASTIC model integrates seven geological parameters. The DRASTIC-LU model includes an eighth parameter in addition to the previous ones. This parameter is the land use that represents the human source of groundwater pollution. The DRASTIC map showed four classes: very low (12.06%), low (81.88%), moderate (5.16%) and high (0.9%), where the vulnerability index ranged between 43 and 159. The DRASTIC-LU vulnerability index ranged between 53 and 204 and showed five classes: very low (3.10%), low (14.06%), moderate (17.11%), high (27.08%) and very high (38.65%). The DRASTIC-LU vulnerability map indicated that the high pollution risk is imposed by the intensive vegetable cultivation and the domestic wastewater. The pollution hazard index (PHI) was calculated based on the ANN modelling, using the land-use as an input and the vulnerability as a hidden layer. The DRASTIC model-based PHI map showed six classes: rare hazard (8.6%), very low (30.97%), low (6.18%), moderate (51.45%), high (2.43%) and very high (0.37%). While, The DRASTIC-LU model-based PHI map (PHI) showed seven classes: rare hazard (2.91%), very low (11.9%), low (12.33%), moderate (13.78%), high (9.23%), very high (15.46%) and extremely hazardous (34.39%). The validation of these maps indicated that the DRSTIC-LU-based PHI is more reliable as it accurately identifies the hazardous zones.

摘要

利用基于 GIS 的多准则分析和人工神经网络 (ANN) 方法,通过 DRASTIC 和 DRASTIC-LU 模型对布拉加浅层含水层的地下水脆弱性和污染危害进行了评估。DRASTIC 模型综合了七个地质参数。DRASTIC-LU 模型除了之前的参数外,还包含了第八个参数。这个参数是代表地下水污染人为来源的土地利用。DRASTIC 图显示了四个类别:极低(12.06%)、低(81.88%)、中等(5.16%)和高(0.9%),脆弱性指数在 43 到 159 之间。DRASTIC-LU 脆弱性指数在 53 到 204 之间,显示了五个类别:极低(3.10%)、低(14.06%)、中等(17.11%)、高(27.08%)和极高(38.65%)。DRASTIC-LU 脆弱性图表明,高强度的蔬菜种植和生活污水造成了高污染风险。污染危害指数 (PHI) 是基于 ANN 模型,利用土地利用作为输入和脆弱性作为隐藏层来计算的。基于 DRASTIC 模型的 PHI 图显示了六个类别:罕见危害(8.6%)、极低(30.97%)、低(6.18%)、中等(51.45%)、高(2.43%)和极高(0.37%)。而基于 DRASTIC-LU 模型的 PHI 图(PHI)显示了七个类别:罕见危害(2.91%)、极低(11.9%)、低(12.33%)、中等(13.78%)、高(9.23%)、极高(15.46%)和极高危害(34.39%)。这些地图的验证表明,基于 DRSTIC-LU 的 PHI 更可靠,因为它准确地识别了危险区域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验