Suppr超能文献

掺杂钼的 NiFe-LDH 电催化剂提高析氧反应活性,实现高效水分解。

Boosting oxygen evolution reaction activity with Mo incorporated NiFe-LDH electrocatalyst for efficient water electrolysis.

机构信息

School of Energy Technology, Hydrogen Energy, Korea Institute of Energy Technology, 21 KENTECH-gil, Naju-si, Jeonnam, 58330, Republic of Korea.

Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea.

出版信息

Chemosphere. 2023 Dec;344:140314. doi: 10.1016/j.chemosphere.2023.140314. Epub 2023 Sep 26.

Abstract

This work demonstrates a simple and scalable methodology for the binder-free direct growth of Mo-doped NiFe-layered double hydroxides on a nickel substrate via an electrodeposition route at room temperature. A three-dimensional (3D) nanosheet array morphology of the electrocatalyst provides immense electrochemical surface area as well as abundant catalytically active sites. Mo incorporation in the NiFe-LDH plays a crucial role in regulating the catalytic activity of oxygen evolution reaction (OER). The prepared electrocatalyst exhibited low overpotential (i.e., 230 mV) at 30 mA cm for OER in an alkaline electrolyte (i.e., 1 M KOH). Furthermore, the optimized Mo-doped NiFe-LDH electrode was used as an anode in a laboratory-scale in situ single cell test system for alkaline water electrolysis at 80 °C with a continuous flow of 30 wt% KOH, and it shows the efficient electrochemical performance with a lower cell voltage of 1.80 V at a current density of 400 mA cm. In addition, an admirable long-term cell durability is also demonstrated by the cell for 24 h. This work encourages new designs and further development of electrode material for alkaline water electrolysis on a commercial scale.

摘要

这项工作展示了一种简单且可扩展的方法,通过室温下的电沉积在镍基底上无粘结剂直接生长 Mo 掺杂的 NiFe 层状双氢氧化物。电催化剂的三维(3D)纳米片阵列形态提供了巨大的电化学表面积和丰富的催化活性位点。Mo 掺入 NiFe-LDH 中在调节析氧反应(OER)的催化活性方面起着至关重要的作用。在碱性电解质(即 1M KOH)中,所制备的电催化剂在 OER 中表现出低过电位(即在 30 mA cm 时为 230 mV)。此外,优化的 Mo 掺杂 NiFe-LDH 电极被用作碱性水电解实验室规模原位单电池测试系统的阳极,在连续流动的 30wt%KOH 下在 80°C 下进行,在 400 mA cm 的电流密度下显示出高效的电化学性能,其电池电压低至 1.80 V。此外,该电池还表现出令人钦佩的长期电池耐久性,可稳定运行 24 小时。这项工作鼓励为商业规模的碱性水电解设计和进一步开发电极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验