Jiang Kun, Liu Wenjun, Lai Wei, Wang Menglian, Li Qian, Wang Zhaolong, Yuan Junjie, Deng Yilin, Bao Jian, Ji Hongbing
Institute for Energy Research, School of Material Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, P.R. China.
Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P.R. China.
Inorg Chem. 2021 Nov 15;60(22):17371-17378. doi: 10.1021/acs.inorgchem.1c02903. Epub 2021 Oct 27.
Electrolysis of seawater can not only desalinate seawater but also produce high-purity hydrogen. Nevertheless, the presence of chloride ions in seawater will cause electrode corrosion and also undergo a chlorine oxidation reaction (ClOR) that competes with the oxygen evolution reaction (OER). Therefore, highly efficient and long-term stable electrocatalysts are needed in this field. In this work, an advanced bifunctional electrocatalyst based on NiFe layered double hydroxide (LDH)/FeOOH heterostructure nanosheets (NiFe LDH/FeOOH) was synthesized on nickel-iron foam (INF) via a simple electrodeposition method. The NiFe LDH/FeOOH electrode demonstrates excellent electrocatalytic activity and stability, which results from the strong interaction between FeOOH and NiFe LDH. Furthermore, ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman spectroscopy revealed the catalytic process and also demonstrated that the NiFe LDH/FeOOH heterostructure could facilitate the formation of active NiOOH species in the reaction. The obtained NiFe LDH/FeOOH catalyst displays low overpotentials of 181.8 mV at 10 mA·cm for hydrogen evolution reaction (HER) and 286.2 mV at 100 mA·cm for OER in the 1.0 M KOH + 0.5 M NaCl electrolyte. Furthermore, it also exhibits a low voltage of 1.55 V to achieve the current density of 10 mA·cm and works steadily for 105 h at 100 mA·cm for overall alkaline simulated seawater splitting. This work will afford a valid strategy for designing a non-noble metal catalyst for seawater splitting.
电解海水不仅可以使海水脱盐,还能产生高纯度氢气。然而,海水中氯离子的存在会导致电极腐蚀,并且还会发生与析氧反应(OER)竞争的氯氧化反应(ClOR)。因此,该领域需要高效且长期稳定的电催化剂。在这项工作中,通过简单的电沉积方法在泡沫镍铁(INF)上合成了一种基于镍铁层状双氢氧化物(LDH)/氢氧化铁(FeOOH)异质结构纳米片(NiFe LDH/FeOOH)的先进双功能电催化剂。NiFe LDH/FeOOH电极表现出优异的电催化活性和稳定性,这源于FeOOH与NiFe LDH之间的强相互作用。此外,非原位X射线光电子能谱(XPS)和原位拉曼光谱揭示了催化过程,还表明NiFe LDH/FeOOH异质结构可以促进反应中活性氢氧化镍(NiOOH)物种的形成。在1.0 M KOH + 0.5 M NaCl电解液中,所制备的NiFe LDH/FeOOH催化剂在析氢反应(HER)中,电流密度为10 mA·cm时过电位为181.8 mV,在析氧反应(OER)中,电流密度为100 mA·cm时过电位为286.2 mV。此外,在实现10 mA·cm的电流密度时,其电压低至1.55 V,并且在100 mA·cm下对整体碱性模拟海水分解能稳定工作105小时。这项工作将为设计用于海水分解的非贵金属催化剂提供有效策略。