Grooms Alexander J, Nordmann Anna N, Badu-Tawiah Abraham K
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH-43210, USA.
Angew Chem Int Ed Engl. 2023 Dec 18;62(51):e202311100. doi: 10.1002/anie.202311100. Epub 2023 Oct 20.
The fusion of non-thermal plasma with charged microdroplets facilitates catalyst-free N-alkylation for a variety of primary amines, without halide salt biproduct generation. Significant reaction enhancement (up to >200×) is observed over microdroplet reactions generated from electrospray. This enhancement for the plasma-microdroplet system is attributed to the combined effects of energetic collisions and the presence of reactive oxygen species (ROS). The ROS (e.g., O ⋅ ) act as a proton sink to increase abundance of free neutral amines in the charged microdroplet environment. The effect of ROS on N-alkylation is confirmed through three unique experiments: (i) utilization of radical scavenging reagent, (ii) characterization of internal energy distribution, and (iii) controls performed without plasma, which lacked reaction acceleration. Establishing plasma discharge in the wake of charged microdroplets as a green synthetic methodology overcomes two major challenges within conventional gas-phase plasma chemistry, including the lack of selectivity and product scale-up. Both limitations are overcome here, where dual tunability is achieved by controlling reagent concentration and residence time in the microdroplet environment, affording single or double N-alkylated products. Products are readily collected yielding milligram quantities in eight hours. These results showcase a novel synthetic strategy that represents a straightforward and sustainable C-N bond-forming process.
非热等离子体与带电微滴的融合促进了多种伯胺的无催化剂N-烷基化反应,且不产生卤化物盐副产物。与电喷雾产生的微滴反应相比,观察到显著的反应增强(高达>200倍)。等离子体-微滴系统的这种增强归因于高能碰撞和活性氧(ROS)的存在的综合作用。ROS(例如,O·)充当质子阱,以增加带电微滴环境中游离中性胺的丰度。通过三个独特的实验证实了ROS对N-烷基化的影响:(i)使用自由基清除剂,(ii)表征内能分布,以及(iii)在没有等离子体的情况下进行的对照实验,该对照实验缺乏反应加速。在带电微滴之后建立等离子体放电作为一种绿色合成方法克服了传统气相等离子体化学中的两个主要挑战,包括缺乏选择性和产物放大。这里克服了这两个限制,通过控制微滴环境中的试剂浓度和停留时间实现了双重可调性,得到单或双N-烷基化产物。产物易于收集,八小时内可得到毫克量。这些结果展示了一种新颖的合成策略,代表了一种直接且可持续的C-N键形成过程。