Huang Kai-Hung, Chen Kitmin, Morato Nicolás M, Sams Thomas C, Dziekonski Eric T, Cooks R Graham
Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
Purdue Institute for Cancer Research, Purdue University West Lafayette Indiana 47907 USA.
Chem Sci. 2025 Mar 21;16(17):7544-7550. doi: 10.1039/d5sc00638d. eCollection 2025 Apr 30.
Automation of chemical synthesis and high-throughput (HT) screening are important for speeding up drug discovery. Here, we describe an automated HT picomole scale synthesis system which uses desorption electrospray ionization (DESI) to create microdroplets of reaction mixtures at individual positions from a two-dimensional reactant array and transfer them to a corresponding position in an array of collected reaction products. On-the-fly chemical transformations are facilitated by the reaction acceleration phenomenon in microdroplets and high reaction conversions are achieved during the milliseconds droplet flight time from the reactant to the product array. Successful functionalization of bioactive molecules is demonstrated through the generation of 172 analogs (64% success rate) using multiple reaction types. Synthesis throughput is ∼45 seconds/reaction including droplet formation, reaction, and collection steps, all of which occur in an integrated fashion, generating product amounts sufficient for subsequent bioactivity screening (low ng to low μg). Quantitative performance was validated using LC/MS. This system bridges the demonstrated capabilities of HT-DESI for reaction screening and label-free bioassays, allowing consolidation of the key early drug discovery steps around a single synthetic-analytical technology.
化学合成自动化和高通量(HT)筛选对于加速药物发现至关重要。在此,我们描述了一种自动化的高通量皮摩尔规模合成系统,该系统使用解吸电喷雾电离(DESI)在二维反应物阵列的各个位置创建反应混合物的微滴,并将它们转移到收集的反应产物阵列中的相应位置。微滴中的反应加速现象促进了即时化学转化,并且在微滴从反应物阵列飞行到产物阵列的毫秒级飞行时间内实现了高反应转化率。通过使用多种反应类型生成172种类似物(成功率64%),证明了生物活性分子的成功功能化。合成通量约为45秒/反应,包括微滴形成、反应和收集步骤,所有这些步骤以集成方式进行,产生的产物量足以用于后续的生物活性筛选(低纳克到低微克)。使用液相色谱/质谱联用(LC/MS)验证了定量性能。该系统弥补了HT-DESI在反应筛选和无标记生物测定方面已证明的能力,允许围绕单一合成分析技术整合关键的早期药物发现步骤。