School of Computer Science, Sichuan University, Chengdu, P. R. China.
Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China.
Int J Neural Syst. 2023 Nov;33(11):2350057. doi: 10.1142/S0129065723500570. Epub 2023 Sep 29.
Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.
放射治疗是癌症的主要治疗方法之一。为了加速放射治疗在临床中的实施,已经开发了各种基于深度学习的方法来进行自动剂量预测。然而,这些方法的有效性严重依赖于具有标签的大量数据的可用性,即剂量分布图,这需要剂量师花费相当多的时间和精力来获取。对于发病率较低的癌症,如宫颈癌,收集足够数量的带标签数据来训练性能良好的深度学习(DL)模型通常是一种奢侈。为了解决这个问题,在本文中,我们求助于无监督域自适应(UDA)策略,通过利用标记良好的高发直肠癌(源域)来实现宫颈癌(目标域)的准确剂量预测。具体来说,我们引入了交叉注意机制来学习域不变特征,并开发了基于交叉注意的变换编码器来对齐两个不同的癌症域。同时,为了保留目标特定的知识,我们使用多个域分类器来强制网络提取更具区分性的目标特征。此外,我们使用两个独立的卷积神经网络(CNN)解码器来弥补纯变换中缺乏空间归纳偏差,并为两个域生成准确的剂量图。此外,为了提高性能,我们引入了两个额外的损失,即知识蒸馏损失(KDL)和域分类损失(DCL),以在保留域特定信息的同时转移域不变特征。在直肠癌数据集和宫颈癌数据集上的实验结果表明,我们的方法在定量方面取得了最佳结果,分别为[Formula: see text]、[Formula: see text]和 HI 为 1.446、1.231 和 0.082,并且在定性评估方面优于其他方法。