Suppr超能文献

TransVQA:用于无监督域适应的可转移向量量化对齐

TransVQA: Transferable Vector Quantization Alignment for Unsupervised Domain Adaptation.

作者信息

Sun Yulin, Dong Weisheng, Li Xin, Dong Le, Shi Guangming, Xie Xuemei

出版信息

IEEE Trans Image Process. 2024;33:856-866. doi: 10.1109/TIP.2024.3352392. Epub 2024 Jan 19.

Abstract

Unsupervised Domain adaptation (UDA) aims to transfer knowledge from the labeled source domain to the unlabeled target domain. Most existing domain adaptation methods are based on convolutional neural networks (CNNs) to learn cross-domain invariant features. Inspired by the success of transformer architectures and their superiority to CNNs, we propose to combine the transformer with UDA to improve their generalization properties. In this paper, we present a novel model named Trans ferable V ector Q uantization A lignment for Unsupervised Domain Adaptation (TransVQA), which integrates the Transferable transformer-based feature extractor (Trans), vector quantization domain alignment (VQA), and mutual information weighted maximization confusion matrix (MIMC) of intra-class discrimination into a unified domain adaptation framework. First, TransVQA uses the transformer to extract more accurate features in different domains for classification. Second, TransVQA, based on the vector quantization alignment module, uses a two-step alignment method to align the extracted cross-domain features and solve the domain shift problem. The two-step alignment includes global alignment via vector quantization and intra-class local alignment via pseudo-labels. Third, for intra-class feature discrimination problem caused by the fuzzy alignment of different domains, we use the MIMC module to constrain the target domain output and increase the accuracy of pseudo-labels. The experiments on several datasets of domain adaptation show that TransVQA can achieve excellent performance and outperform existing state-of-the-art methods.

摘要

无监督域适应(UDA)旨在将知识从有标签的源域转移到无标签的目标域。大多数现有的域适应方法基于卷积神经网络(CNN)来学习跨域不变特征。受Transformer架构的成功及其相对于CNN的优势启发,我们提议将Transformer与UDA相结合以提高其泛化性能。在本文中,我们提出了一种名为用于无监督域适应的可转移向量量化对齐(TransVQA)的新型模型,它将基于Transformer的可转移特征提取器(Trans)、向量量化域对齐(VQA)以及类内判别互信息加权最大化混淆矩阵(MIMC)集成到一个统一的域适应框架中。首先,TransVQA使用Transformer在不同域中提取更准确的特征用于分类。其次,基于向量量化对齐模块,TransVQA使用两步对齐方法来对齐提取的跨域特征并解决域偏移问题。两步对齐包括通过向量量化进行全局对齐以及通过伪标签进行类内局部对齐。第三,针对不同域的模糊对齐导致的类内特征判别问题,我们使用MIMC模块来约束目标域输出并提高伪标签的准确性。在几个域适应数据集上的实验表明,TransVQA可以实现优异的性能并优于现有的最先进方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验