Suppr超能文献

基于迁移学习的深度卷积神经网络用于宫颈癌放疗中直肠毒性预测的可行性研究

Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study.

作者信息

Zhen Xin, Chen Jiawei, Zhong Zichun, Hrycushko Brian, Zhou Linghong, Jiang Steve, Albuquerque Kevin, Gu Xuejun

机构信息

Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, TX 75390, United States of America. Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.

出版信息

Phys Med Biol. 2017 Oct 12;62(21):8246-8263. doi: 10.1088/1361-6560/aa8d09.

Abstract

Better understanding of the dose-toxicity relationship is critical for safe dose escalation to improve local control in late-stage cervical cancer radiotherapy. In this study, we introduced a convolutional neural network (CNN) model to analyze rectum dose distribution and predict rectum toxicity. Forty-two cervical cancer patients treated with combined external beam radiotherapy (EBRT) and brachytherapy (BT) were retrospectively collected, including twelve toxicity patients and thirty non-toxicity patients. We adopted a transfer learning strategy to overcome the limited patient data issue. A 16-layers CNN developed by the visual geometry group (VGG-16) of the University of Oxford was pre-trained on a large-scale natural image database, ImageNet, and fine-tuned with patient rectum surface dose maps (RSDMs), which were accumulated EBRT  +  BT doses on the unfolded rectum surface. We used the adaptive synthetic sampling approach and the data augmentation method to address the two challenges, data imbalance and data scarcity. The gradient-weighted class activation maps (Grad-CAM) were also generated to highlight the discriminative regions on the RSDM along with the prediction model. We compare different CNN coefficients fine-tuning strategies, and compare the predictive performance using the traditional dose volume parameters, e.g. D , and the texture features extracted from the RSDM. Satisfactory prediction performance was achieved with the proposed scheme, and we found that the mean Grad-CAM over the toxicity patient group has geometric consistence of distribution with the statistical analysis result, which indicates possible rectum toxicity location. The evaluation results have demonstrated the feasibility of building a CNN-based rectum dose-toxicity prediction model with transfer learning for cervical cancer radiotherapy.

摘要

更好地理解剂量-毒性关系对于安全提高剂量以改善晚期宫颈癌放疗中的局部控制至关重要。在本研究中,我们引入了一种卷积神经网络(CNN)模型来分析直肠剂量分布并预测直肠毒性。回顾性收集了42例接受外照射放疗(EBRT)联合近距离放疗(BT)的宫颈癌患者,其中包括12例出现毒性反应的患者和30例无毒性反应的患者。我们采用迁移学习策略来克服患者数据有限的问题。由牛津大学视觉几何组(VGG-16)开发的一个16层CNN在大规模自然图像数据库ImageNet上进行预训练,并使用患者直肠表面剂量图(RSDM)进行微调,RSDM是展开的直肠表面上累积的EBRT + BT剂量。我们使用自适应合成采样方法和数据增强方法来应对数据不平衡和数据稀缺这两个挑战。还生成了梯度加权类激活映射(Grad-CAM)以突出RSDM上的判别区域以及预测模型。我们比较了不同的CNN系数微调策略,并使用传统的剂量体积参数(例如D)以及从RSDM中提取的纹理特征比较了预测性能。所提出的方案取得了令人满意的预测性能,并且我们发现毒性患者组上的平均Grad-CAM与统计分析结果在分布上具有几何一致性,这表明了可能的直肠毒性位置。评估结果证明了构建基于CNN的直肠剂量-毒性预测模型并将迁移学习用于宫颈癌放疗的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验