Manillier C, Vinay P, Lalonde L, Gougoux A
Am J Physiol. 1986 Nov;251(5 Pt 2):F919-32. doi: 10.1152/ajprenal.1986.251.5.F919.
In vivo the dog kidney responds to metabolic or respiratory acidosis by a marked increment of its ammonia production (expressed per 100 milliliters glomerular filtration rate). This phenomenon is related to a switch from metabolic utilization of nonammoniagenic (lactate) to ammoniagenic (glutamine) substrates to support ATP turnover in the proximal tubules. We have proposed that in vivo the maximum activity of the ammoniagenic process is fixed by the ATP turnover in this segment of the nephron. The maximal glutamine metabolism is reached when 100% of this turnover is supported by glutamine metabolism. We have studied how these concepts apply to the adaptation of glutamine metabolism and ammonia production to a low pH in vitro using proximal tubules of dogs incubated when one (lactate or glutamine) or several (glutamine plus lactate or plus palmitate) substrates are provided. At pH 7.4 glutamine alone supports already 71-76% of the tissue ATP turnover (minimal and maximal values). With acidification this fraction rises to nearly 87-94%, but this increases only modestly the ammonia production. Reducing the ATP turnover with ouabain at pH 7.4 decreases the absolute glutamine utilization, which now supports only 45-50% of the ATP turnover. Again acidification increases this fraction to 90-99%. Addition of lactate with glutamine displaces part of the glutamine metabolized, but greatly stimulates the synthesis of alanine. Fatty acids depress ammonia production and blunt the tissue response to acidification. Gluconeogenesis from lactate is minimally influenced by incubation pH. It is concluded that the ATP turnover limits the metabolism of glutamine by proximal tubules in vitro as in vivo in the dog, and that the response to acidification is small in vitro because of the absence of alternative substrates.
在体内,犬肾对代谢性或呼吸性酸中毒的反应是氨生成显著增加(以每100毫升肾小球滤过率表示)。这种现象与从非氨生成性(乳酸)底物的代谢利用向氨生成性(谷氨酰胺)底物的转变有关,以支持近端小管中的ATP周转。我们提出,在体内,氨生成过程的最大活性由肾单位这一部分的ATP周转所固定。当100%的这种周转由谷氨酰胺代谢支持时,达到最大谷氨酰胺代谢。我们研究了这些概念如何应用于体外犬近端小管在提供一种(乳酸或谷氨酰胺)或几种(谷氨酰胺加乳酸或加棕榈酸)底物时谷氨酰胺代谢和氨生成对低pH的适应性。在pH 7.4时,仅谷氨酰胺就已经支持71 - 76%的组织ATP周转(最小值和最大值)。随着酸化,这一比例上升至近87 - 94%,但这仅适度增加了氨的生成。在pH 7.4时用哇巴因降低ATP周转会降低绝对谷氨酰胺利用率,此时谷氨酰胺仅支持45 - 50%的ATP周转。再次酸化会使这一比例增加到90 - 99%。谷氨酰胺与乳酸一起添加会取代部分被代谢的谷氨酰胺,但会极大地刺激丙氨酸的合成。脂肪酸会抑制氨的生成并减弱组织对酸化的反应。乳酸的糖异生受孵育pH的影响最小。结论是,在体外,犬近端小管中ATP周转像在体内一样限制了谷氨酰胺的代谢,并且由于缺乏替代底物,体外对酸化的反应较小。