Gao Xiaoqi, Hu Xuejia, Yang Dongyong, Hu Qinghao, Zheng Jingjing, Zhao Shukun, Zhu Chengliang, Xiao Xuan, Yang Yi
Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China.
Lab Chip. 2023 Oct 10;23(20):4413-4421. doi: 10.1039/d3lc00448a.
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
排列模式和几何线索已被证明会影响细胞功能和命运,这就需要高效且通用的细胞图案化技术。尽管取得了不断的成就,主要集中在单个细胞和均匀的细胞图案上,但以灵活且无接触的方式同时构建具有不同图案和位置关系的细胞排列仍然是一项挑战。在此,基于准周期声场强大且多样的图案构建能力,提出了具有多种几何形状和结构的干细胞排列,具有图案和结构丰富以及结构调制灵活性的优点。八重波干涉产生规则电位,导致更高的旋转对称性和几何单元更复杂的排列。此外,通过灵活调制这些波矢量之间的相位关系,多种细胞图案单元同时排列在这种电位中,如圆形、三角形和方形。事实证明,这些多样的细胞图案便于构建人间充质干细胞(hMSC)模型,用于研究细胞排列对干细胞分化的影响。这项工作填补了准周期图案中声学细胞图案化的空白,并在组织工程和再生医学中显示出有前景的潜力。