Chen Yi-Ju, Schmidl Gabriele, Dellith Andrea, Gawlik Annett, Jia Guobin, Bocklitz Thomas, Wu Xiaofei, Plentz Jonathan, Huang Jer-Shing
Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany.
Nanoscale. 2023 Oct 26;15(41):16626-16635. doi: 10.1039/d3nr03522k.
Plasmonic nanoparticle arrays with a specific lattice arrangement can support surface lattice resonances (SLRs). SLR exhibits a sharp spectral peak and finds many applications including optical sensing and plasmonic lasers. To optimize SLR for application, a robust method that allows the mass production of plasmonic nanoparticle arrays with refined particle morphology and well-defined lattice arrangement is required. In this work, we combine nanosphere lithography (NSL) with thermal annealing or nanosecond-pulsed laser treatment to refine plasmonic nanoparticles in a honeycomb lattice. We comparatively study the effects of the two treatment methods on the particle morphology and lattice arrangement of mono (Ag and Pd) and bi-metallic (Ag-Pd) nanoparticle lattices. In general, thermal annealing preserves the lattice arrangement but fairly changes the particle roundness, while laser treatment produces particles with varying morphologies and spatial distribution. We also theoretically and experimentally investigate the optical responses of Ag nanoparticle lattices produced by different treatment methods. The observed difference in spectra can be attributed to the varying particle morphology, which shifts the localized surface plasmon resonance differently, resulting in a significant change in SLR. These findings provide valuable insights for optimizing plasmonic nanoparticle arrays for various applications.
具有特定晶格排列的等离子体纳米颗粒阵列能够支持表面晶格共振(SLR)。SLR呈现出一个尖锐的光谱峰,并具有许多应用,包括光学传感和等离子体激光器。为了优化SLR以用于实际应用,需要一种强大的方法,能够大规模生产具有精细颗粒形态和明确晶格排列的等离子体纳米颗粒阵列。在这项工作中,我们将纳米球光刻(NSL)与热退火或纳秒脉冲激光处理相结合,以细化蜂窝晶格中的等离子体纳米颗粒。我们比较研究了这两种处理方法对单金属(Ag和Pd)和双金属(Ag-Pd)纳米颗粒晶格的颗粒形态和晶格排列的影响。一般来说,热退火保留了晶格排列,但相当程度地改变了颗粒的圆度,而激光处理产生了具有不同形态和空间分布的颗粒。我们还从理论和实验上研究了不同处理方法制备的Ag纳米颗粒晶格的光学响应。观察到的光谱差异可归因于颗粒形态的变化,这会以不同方式移动局域表面等离子体共振,从而导致SLR发生显著变化。这些发现为优化用于各种应用的等离子体纳米颗粒阵列提供了有价值的见解。