Heidari Gourji Fatemeh, Rajaramanan Tharmakularasa, Frette Øyvind, Velauthapillai Dhayalan
Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway.
Department of Physics and Technology, University of Bergen, Allegaten 55, 5007, Bergen, Norway.
Nanoscale. 2023 Oct 12;15(39):16178-16187. doi: 10.1039/d3nr02509h.
Although the fabrication of hollow nanostructures from single and binary transition metal oxides has been accomplished effectively, there still exists a significant challenge in creating advanced hollow morphologies comprising mixed transition metal oxides such as ternary and quaternary compositions. In this context, we have adopted an alternative approach by employing a straightforward self-templating method to synthesize ternary metal molybdate nanomaterials. These materials possess the chemical composition of NiCoMoO and exhibit a unique nanoporous yolk-shell hollow structure. Commencing with mixed metal-glycerate solid spheres, we have successfully guided the formation of this chemical composition and distinctive yolk-shell hollow sphere architecture through meticulous thermal treatment control. The consistency of our results is confirmed through SEM images. Thanks to their robust structural integrity, advanced internal morphology, and increased surface area, these hierarchical hollow spheres demonstrate remarkable electrochemical performance when utilized as advanced electrode materials for supercapacitors. When serving as electrode materials in supercapacitors, these nanoporous NiCoMoO yolk-shell hollow spheres deliver a specific capacitance of 1125 F g at a current density of 0.5 A g, maintaining an impressive cycling stability of 91.48% even after 5000 cycles. In a hybrid device configuration wherein activated carbon (AC) functions as the negative electrode and NiCoMoO yolk-shell hollow spheres serve as the positive electrode, exceptional performance is observed. This configuration achieves a substantial specific energy density of 44.67 W h kg, alongside a maximum power density of 8000 W kg, and exceptional cycling stability of 93.03% even after 5000 cycles.
尽管已经有效地实现了由单一和二元过渡金属氧化物制备中空纳米结构,但在创建包含混合过渡金属氧化物(如三元和四元组成)的先进中空形态方面仍然存在重大挑战。在这种情况下,我们采用了另一种方法,即采用简单的自模板法合成三元金属钼酸盐纳米材料。这些材料具有NiCoMoO的化学成分,并呈现出独特的纳米多孔蛋黄壳中空结构。从混合金属甘油酸盐实心球开始,我们通过精心控制热处理成功引导了这种化学成分和独特的蛋黄壳中空球结构的形成。通过扫描电子显微镜(SEM)图像证实了我们结果的一致性。由于其坚固的结构完整性、先进的内部形态和增加的表面积,这些分级中空球在用作超级电容器的先进电极材料时表现出卓越的电化学性能。当用作超级电容器的电极材料时,这些纳米多孔NiCoMoO蛋黄壳中空球在电流密度为0.5 A g时的比电容为1125 F g,即使在5000次循环后仍保持令人印象深刻的91.48%的循环稳定性。在一种混合器件配置中,其中活性炭(AC)用作负极,NiCoMoO蛋黄壳中空球用作正极,观察到了卓越的性能。这种配置实现了44.67 W h kg的高比能量密度,以及8000 W kg的最大功率密度,即使在5000次循环后仍具有93.03%的卓越循环稳定性。