Gisriel Christopher J, Elias Eduard, Shen Gaozhong, Soulier Nathan T, Brudvig Gary W, Croce Roberta, Bryant Donald A
Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, 1081 HV, Amsterdam, Netherlands.
Photosynth Res. 2024 Dec;162(2-3):157-170. doi: 10.1007/s11120-023-01048-4. Epub 2023 Sep 29.
Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.
别藻蓝蛋白是一种藻胆蛋白,它能吸收红光并将能量传递给蓝细菌和红藻中进行氧光合作用的反应中心。最近有研究表明,一些别藻蓝蛋白能吸收远红光,并且这些别藻蓝蛋白中的一个子集,由来自ApcD4和ApcB3亚家族的亚基组成(FRL - AP),会形成螺旋纳米管。寡聚化的ApcD4 - ApcB3复合物的最低能量吸收峰出现在709 nm处,这与分别在约650 nm和约670 nm处吸收峰值最大的别藻蓝蛋白(AP;ApcA - ApcB)三聚体和别藻蓝蛋白B(AP - B;ApcD - ApcB)三聚体不同。目前尚不清楚AP变体不同光谱的分子基础。为了解决这个问题,我们对FRL - AP与AP和AP - B进行了结构比较,对FRL - AP进行了光谱分析,并利用了计算方法。我们发现,在AP变体中,α亚基对其藻蓝胆素发色团的吡咯环A的约束程度不同,环A与环B和环C的共面性为发色团的最大吸收设定了基线。寡聚化后,所有AP变体的α发色团的最大吸收峰都出现了约25至30 nm的红移以及谱带变窄。我们排除了FRL - AP中的激子耦合作为这种红移的基础,并将结果扩展到对AP和AP - B的讨论。相反,我们将这些光谱变化归因于吡咯环D的构象改变,寡聚化后它与环B和环C变得更加共面。这项研究扩展了对藻胆蛋白光捕获特性的分子理解,并将有助于设计用于生物技术应用的藻胆蛋白。