Suppr超能文献

基于锁核酸的 DNA 熵驱动电路增强及模拟引导定位。

Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization.

机构信息

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47415-47424. doi: 10.1021/acsami.3c11189. Epub 2023 Sep 29.

Abstract

Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.

摘要

基于 DNA 分子相互作用的信号放大方法是检测各种低丰度生物标志物的有前途的工具。熵驱动电路 (EDC) 作为一种无酶信号放大方法,已被用于检测和成像各种生物标志物。定位策略可以有效地增加 DNA 反应模块的局部浓度,从而提高信号放大效果。然而,定位策略也可能放大 EDC 的漏反应,并且有效的信号放大可能会受到不清楚的结构-功能关系的限制。在这里,我们利用锁核酸 (LNA) 修饰来增强本地化熵驱动电路 (LEDC) 的稳定性,从而抑制了 94.6%的漏信号。粗粒度模型分子模拟用于指导 LEDC 的结构设计,并在分子水平上分析本地化距离和间隔长度等关键因素的影响,以获得最佳的反应性能。通过模拟引导的最佳 LEDC 探针检测 miR-21 和 miR-141 的灵敏度分别为 17.45 和 65 pM,比自由 EDC 高 1345 和 521 倍。LEDC 进一步用于癌细胞中 miRNA 的荧光成像,表现出优异的特异性和灵敏度。这项工作利用 LNA 和分子模拟全面提高了本地化 DNA 信号放大电路的性能,为生物传感和成像提供了先进的 DNA 探针设计策略,并为基于 DNA 的探针的设计者提供了有价值的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验