Suppr超能文献

嵌入生物质衍生多孔碳中的双金属纳米立方体,用于构建磁/碳双机制层状结构以实现高效微波吸收。

Bimetallic nanocubes embedded in biomass-derived porous carbon to construct magnetic/carbon dual-mechanism layered structures for efficient microwave absorption.

作者信息

Zheng Hao, Nan Kai, Wang Wei, Li Qingwei, Wang Yan

机构信息

School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.

Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.

出版信息

J Colloid Interface Sci. 2024 Jan;653(Pt A):930-941. doi: 10.1016/j.jcis.2023.09.121. Epub 2023 Sep 22.

Abstract

Biomass-derived porous carbon materials have great potential for the development of lightweight and efficient broadband microwave absorbers. In this study, we reported the successful immobilization of CoO/CoFeO nanocubes on porous carbon derived from ginkgo biloba shells by activated carbonization and electrostatic self-assembly processes. The optimal reflection loss value of the prepared BPC@CoO/CoFeO reaches -68.5 dB when the filling load is 10 wt%, and the effective absorption bandwidth is 6.2 GHz with a matching thickness of 2 mm. The excellent microwave absorption (MA) performance is attributed to the rational three-dimensional structural design, the modulation of magnetic/carbon components, the optimized impedance matching, and the coordinated action of multiple mechanisms. It was further demonstrated by high-frequency structural simulation that the composite can effectively dissipate microwave energy in practical applications. Therefore, the results indicate a favorable potential of the synthesis and application of semiconductor/magnetic component/biomass-derived carbon microwave absorbing materials.

摘要

生物质衍生的多孔碳材料在开发轻质高效宽带微波吸收剂方面具有巨大潜力。在本研究中,我们报道了通过活性炭化和静电自组装过程成功地将CoO/CoFeO纳米立方体固定在源自银杏叶壳的多孔碳上。当填充量为10 wt%时,制备的BPC@CoO/CoFeO的最佳反射损耗值达到-68.5 dB,有效吸收带宽为6.2 GHz,匹配厚度为2 mm。优异的微波吸收(MA)性能归因于合理的三维结构设计、磁/碳组分的调控、优化的阻抗匹配以及多种机制的协同作用。高频结构模拟进一步表明,该复合材料在实际应用中能够有效地耗散微波能量。因此,结果表明半导体/磁性组分/生物质衍生碳微波吸收材料的合成与应用具有良好的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验