Department of Bioengineering, Temple University, Philadelphia, PA, USA.
Photothermal Spectroscopy Corporation, Santa Barbara, CA, USA.
Appl Spectrosc. 2023 Nov;77(11):1311-1324. doi: 10.1177/00037028231201427. Epub 2023 Sep 29.
The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation ( = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO) content ( = 0.75) and carbonate (CO) content ( = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation ( = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO content and heterogeneity, collagen integrity, and CO content) could significantly predict proximal femoral stiffness (= 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.
骨结构和强度的分子基础是亚微米尺度(约 500nm)的矿化胶原纤维。最近,光学光热红外(O-PTIR)光谱技术的进步使得对骨组成的研究可以达到前所未有的亚微米空间分辨率,这可能为探究影响骨功能的潜在因素提供新的视角。在这里,我们研究了(i)O-PTIR 衍生的光谱参数是否与标准衰减全反射(ATR)傅里叶变换红外光谱(FTIR)光谱数据相关,以及(ii)O-PTIR 衍生的光谱参数,包括组织异质性,是否有助于预测股骨近端骨刚度。对连续脱矿骨粉的分析表明,ATR 和 O-PTIR 光谱定量的矿物质含量之间存在显著相关性(r=0.96),表明该技术在评估骨矿化方面的有效性。使用股骨颈部分,主成分分析表明 O-PTIR 和 ATR 光谱之间的差异主要归因于磷酸离子(PO)吸收带,其在 O-PTIR 光谱中通常向更高的波数移动。此外,ATR 和 O-PTIR 光谱定量的焦磷酸盐(HPO)含量(r=0.75)和碳酸盐(CO)含量(r=0.66)之间存在显著相关性,这进一步加强了该方法评估骨矿物质组成的有效性。在 500nm 像素分辨率下对单个骨小梁进行 O-PTIR 成像,说明了不同刚度的股骨颈中骨亚微米组成的差异。O-PTIR 分析表明骨刚度与矿化成熟度之间存在显著负相关(r=-0.71),这表明新形成的骨是骨功能的一个重要贡献者。最后,偏最小二乘回归分析表明,与使用 ATR 参数相比,结合多个 O-PTIR 参数(HPO 含量和异质性、胶原完整性和 CO 含量)可以更准确地预测股骨近端刚度(r=0.74,误差=9.7%)。此外,我们还描述了 O-PTIR 光谱中骨组织方向的影响的新发现。总的来说,这项研究强调了 O-PTIR 光谱的一个新应用,这可能为探究影响骨力学性能的分子水平因素提供新的视角。