Suppr超能文献

鉴定免疫相关枢纽基因并构建低级别胶质瘤免疫相关基因预后指标。

Identification of immune-related hub genes and construction of an immune-related gene prognostic index for low-grade glioma.

机构信息

Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.

Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, China.

出版信息

J Cell Mol Med. 2023 Dec;27(23):3851-3863. doi: 10.1111/jcmm.17960. Epub 2023 Sep 29.

Abstract

Low-grade glioma (LGG) poses significant management challenges and has a dismal prognosis. While immunotherapy has shown significant promise in cancer treatment, its progress in glioma has confronted with challenges. In our study, we aimed to develop an immune-related gene prognostic index (IRGPI) which could be used to evaluate the response and efficacy of LGG patients with immunotherapy. We included a total of 529 LGG samples from TCGA database and 1152 normal brain tissue samples from the GTEx database. Immune-related differentially expressed genes (DEGs) were screened. Then, we used weighted gene co-expression network analysis (WGCNA) to identify immune-related hub genes in LGG patients and performed Cox regression analysis to construct an IRGPI. The median IRGPI was used as the cut-off value to categorize LGG patients into IRGPI-high and low subgroups, and the molecular and immune mechanism in IRGPI-defined subgroups were analysed. Finally, we explored the relationship between IRGPI-defined subgroups and immunotherapy related indicators in patients after immunotherapy. Three genes (RHOA, NFKBIA and CCL3) were selected to construct the IRGPI. In a survival analysis using TCGA cohort as a training set, patients in the IRGPI-low subgroup had a better OS than those in IRGPI-high subgroup, consistent with the results in CGGA cohort. The comprehensive results showed that IRGPI-low subgroup had a more abundant activated immune cell population and lower TIDE score, higher MSI, higher TMB score, lower T cell dysfunction score, more likely benefit from ICIs therapy. IRGPI is a promising biomarker in the field of LGG ICIs therapy to distinguish the prognosis, the molecular and immunological characteristics of patients.

摘要

低级别胶质瘤 (LGG) 存在重大管理挑战,预后较差。虽然免疫疗法在癌症治疗中显示出了显著的前景,但它在神经胶质瘤中的进展却面临着挑战。在我们的研究中,我们旨在开发一种免疫相关基因预后指数 (IRGPI),用于评估 LGG 患者接受免疫治疗的反应和疗效。我们纳入了 TCGA 数据库中的 529 例 LGG 样本和 GTEx 数据库中的 1152 例正常脑组织样本。筛选出免疫相关差异表达基因 (DEGs)。然后,我们使用加权基因共表达网络分析 (WGCNA) 识别 LGG 患者中的免疫相关枢纽基因,并进行 Cox 回归分析构建 IRGPI。中位数 IRGPI 被用作截断值,将 LGG 患者分为 IRGPI 高和低亚组,分析 IRGPI 定义的亚组中的分子和免疫机制。最后,我们探讨了免疫治疗后患者中 IRGPI 定义的亚组与免疫治疗相关指标之间的关系。选择三个基因 (RHOA、NFKBIA 和 CCL3) 构建 IRGPI。在使用 TCGA 队列作为训练集的生存分析中,IRGPI 低亚组的患者 OS 优于 IRGPI 高亚组,与 CGGA 队列的结果一致。综合结果表明,IRGPI 低亚组具有更丰富的激活免疫细胞群体和更低的 TIDE 评分、更高的微卫星不稳定性 (MSI)、更高的肿瘤突变负荷 (TMB) 评分、更低的 T 细胞功能障碍评分,更有可能从免疫检查点抑制剂 (ICIs) 治疗中获益。IRGPI 是 LGG ICIs 治疗领域有前途的生物标志物,可区分患者的预后、分子和免疫学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a5a/10718158/35911e284b3c/JCMM-27-3851-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验