Scribani Rossi Chiara, Eckartt Kelly, Scarchilli Elisabetta, Angeli Simone, Price-Whelan Alexa, Di Matteo Adele, Chevreuil Maelenn, Raynal Bertrand, Arcovito Alessandro, Giacon Noah, Fiorentino Francesco, Rotili Dante, Mai Antonello, Espinosa-Urgel Manuel, Cutruzzolà Francesca, Dietrich Lars E P, Paone Alessio, Paiardini Alessandro, Rinaldo Serena
Laboratory affiliated to Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
Department of Biological Sciences, Columbia University, New York, USA.
Microbiol Res. 2023 Dec;277:127498. doi: 10.1016/j.micres.2023.127498. Epub 2023 Sep 15.
The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.
许多细菌形成生物膜的能力有助于其恢复力,并使感染更难治疗。生物膜生长会导致内部氧气梯度的形成,从而产生缺氧亚区,细胞还原力在该区域积累,代谢活动可能会受到限制。病原体铜绿假单胞菌通过产生具有氧化还原活性的电子穿梭体(吩嗪)和分泌细胞外基质来抵消缺氧生物膜亚区中的氧化还原失衡,从而导致表面积与体积比增加,这有利于气体交换。基质的产生受第二信使双(3',5')-环二聚鸟苷单磷酸(c-di-GMP)调节,以响应不同的环境线索。来自铜绿假单胞菌的RmcA(c-di-GMP的氧化还原调节剂)是一种多结构域磷酸二酯酶(PDE),可根据吩嗪的可用性调节c-di-GMP水平。RmcA还可以通过周质结构域感知可发酵碳源精氨酸,该周质结构域通过跨膜结构域与四个细胞质Per-Arnt-Sim(PAS)结构域相连,随后是一个双鸟苷酸环化酶(DGC)和一个PDE结构域。这项工作中报道的RmcA细胞质部分的生化特性表明,与催化结构域相邻的PAS结构域通过响应FAD或FADH2差异控制蛋白质构象,以氧化还原依赖的方式调节RmcA PDE活性。如在大菌落生物膜试验中的超皱缩表型所示,这种氧化还原依赖机制可能将吩嗪的氧化还原状态(通过FAD/FADH2比率)与基质产生联系起来。本研究深入了解了RmcA在群体水平上将细胞氧化还原信息转化为生物膜结构响应中的作用。在慢性感染期间会出现资源(即氧气和营养物质)限制的情况,这会影响细胞氧化还原状态并促进抗生素耐受性。因此,从生物学和工程学角度来看,了解条件感知与生物膜结构之间的分子联系至关重要。