Suppr超能文献

基于双功能微流控十字结构的数字聚合酶链反应应用中液滴生成与检测的集成方法。

An approach for integrating droplet generation and detection in digital polymerase chain reaction applications based on a bifunctional microfluidic cross-structure.

机构信息

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.

出版信息

Talanta. 2024 Jan 15;267:125240. doi: 10.1016/j.talanta.2023.125240. Epub 2023 Sep 28.

Abstract

Digital polymerase chain reaction (dPCR) is an approach for absolute nucleic acid quantification with high sensitivity. Although several successful commercial dPCR devices have been developed to date, further miniaturizing device dimensions, decreasing cross-contamination, and improving automation level are still research highlights. In this study, we developed a fully contamination-free dPCR detection chip with fluorescence flow cytometry and micro droplet approach. A bifunctional cross-structure (BFCS) was designed to realize monodisperse sample droplet generation in forward flow and droplet detection in backward flow with simple pneumatic control and fixed chip position. In order to improve droplet detection efficiency and accuracy, droplets morphology and sequence pattern during microfluidic droplet generation and backward flow droplet detection at the same cross-structure were observed and analyzed under different pneumatic pressures. In addition, during backward flow droplet detection, an optimized declination angle of the chip was applied to increase droplet reflux rates. For the validation of PCR performance, temperature changing processes during PCR cycles were achieved by heating the monodispersed droplet array with a customized PCR amplification device. The fluorescence signal of each droplet right after passing the cross-structure was excitated and detected. The absolute quantification ability of our integrated dPCR microfluidic chip utilizing flow fluorescence cytometry was tested and verified with Influenza A virus gene (from 7.5 copies/μL to 30000 copies/μL). Thus, our platform provides a novel and integrated approach for ddPCR analysis.

摘要

数字聚合酶链反应(dPCR)是一种具有高灵敏度的绝对核酸定量方法。尽管迄今为止已经开发出了几种成功的商业 dPCR 设备,但进一步缩小设备尺寸、减少交叉污染和提高自动化水平仍然是研究的重点。在本研究中,我们开发了一种完全无交叉污染的 dPCR 检测芯片,采用荧光流式细胞术和微液滴方法。设计了一种双功能交叉结构(BFCS),通过简单的气动控制和固定的芯片位置,实现正向流动中单分散样品液滴的生成和反向流动中的液滴检测。为了提高液滴检测效率和准确性,在不同气动压力下,观察和分析了在相同交叉结构中微流控液滴生成和反向流液滴检测过程中液滴的形态和序列模式。此外,在反向流液滴检测过程中,应用了优化的芯片倾斜角,以增加液滴回流率。为了验证 PCR 性能,通过使用定制的 PCR 扩增装置加热单分散液滴阵列来实现 PCR 循环过程中的温度变化。在经过交叉结构后,立即激发和检测每个液滴的荧光信号。利用流式荧光细胞术对我们的集成 dPCR 微流控芯片的绝对定量能力进行了测试和验证,检测下限可达 7.5 拷贝/μL,检测上限可达 30000 拷贝/μL。因此,我们的平台为 ddPCR 分析提供了一种新颖的集成方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验