Suppr超能文献

解旋酶在 R 环形成和解析中的作用。

Helicases in R-loop Formation and Resolution.

机构信息

Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

出版信息

J Biol Chem. 2023 Nov;299(11):105307. doi: 10.1016/j.jbc.2023.105307. Epub 2023 Sep 29.

Abstract

With the development and wide usage of CRISPR technology, the presence of R-loop structures, which consist of an RNA-DNA hybrid and a displaced single-strand (ss) DNA, has become well accepted. R-loop structures have been implicated in a variety of circumstances and play critical roles in the metabolism of nucleic acid and relevant biological processes, including transcription, DNA repair, and telomere maintenance. Helicases are enzymes that use an ATP-driven motor force to unwind double-strand (ds) DNA, dsRNA, or RNA-DNA hybrids. Additionally, certain helicases have strand-annealing activity. Thus, helicases possess unique positions for R-loop biogenesis: they utilize their strand-annealing activity to promote the hybridization of RNA to DNA, leading to the formation of R-loops; conversely, they utilize their unwinding activity to separate RNA-DNA hybrids and resolve R-loops. Indeed, numerous helicases such as senataxin (SETX), Aquarius (AQR), WRN, BLM, RTEL1, PIF1, FANCM, ATRX (alpha-thalassemia/mental retardation, X-linked), CasDinG, and several DEAD/H-box proteins are reported to resolve R-loops; while other helicases, such as Cas3 and UPF1, are reported to stimulate R-loop formation. Moreover, helicases like DDX1, DDX17, and DHX9 have been identified in both R-loop formation and resolution. In this review, we will summarize the latest understandings regarding the roles of helicases in R-loop metabolism. Additionally, we will highlight challenges associated with drug discovery in the context of targeting these R-loop helicases.

摘要

随着 CRISPR 技术的发展和广泛应用,由 RNA-DNA 杂合体和一条置换的单链 (ss) DNA 组成的 R 环结构已经得到了广泛的认可。R 环结构已经在各种情况下被牵涉到,并在核酸代谢和相关的生物过程中发挥着关键作用,包括转录、DNA 修复和端粒维持。解旋酶是利用 ATP 驱动的动力来解开双链 (ds) DNA、dsRNA 或 RNA-DNA 杂合体的酶。此外,某些解旋酶具有链退火活性。因此,解旋酶在 R 环生物发生中具有独特的位置:它们利用其链退火活性促进 RNA 与 DNA 的杂交,从而形成 R 环;相反,它们利用其解旋活性分离 RNA-DNA 杂合体并解决 R 环。事实上,许多解旋酶,如 senataxin (SETX)、Aquarius (AQR)、WRN、BLM、RTEL1、PIF1、FANCM、ATRX(X 连锁的α-地中海贫血/智力低下)、CasDinG 和几种 DEAD/H 框蛋白,被报道能解决 R 环;而其他解旋酶,如 Cas3 和 UPF1,则被报道能刺激 R 环的形成。此外,DDX1、DDX17 和 DHX9 等解旋酶已被确定参与 R 环的形成和解析。在这篇综述中,我们将总结最新的关于解旋酶在 R 环代谢中的作用的理解。此外,我们将强调在靶向这些 R 环解旋酶的药物发现方面所面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea50/10641170/e8406138faec/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验