Neuroinflammation Unit, Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark.
Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Mol Psychiatry. 2023 Nov;28(11):4902-4914. doi: 10.1038/s41380-023-02251-4. Epub 2023 Oct 2.
In the field of neurodegenerative diseases, especially sporadic Parkinson's disease (sPD) with dementia (sPDD), the question of how the disease starts and spreads in the brain remains central. While prion-like proteins have been designated as a culprit, recent studies suggest the involvement of additional factors. We found that oxidative stress, damaged DNA binding, cytosolic DNA sensing, and Toll-Like Receptor (TLR)4/9 activation pathways are strongly associated with the sPDD transcriptome, which has dysregulated type I Interferon (IFN) signaling. In sPD patients, we confirmed deletions of mitochondrial (mt)DNA in the medial frontal gyrus, suggesting a potential role of damaged mtDNA in the disease pathophysiology. To explore its contribution to pathology, we used spontaneous models of sPDD caused by deletion of type I IFN signaling (Ifnb/Ifnar mice). We found that the lack of neuronal IFNβ/IFNAR leads to oxidization, mutation, and deletion in mtDNA, which is subsequently released outside the neurons. Injecting damaged mtDNA into mouse brain induced PDD-like behavioral symptoms, including neuropsychiatric, motor, and cognitive impairments. Furthermore, it caused neurodegeneration in brain regions distant from the injection site, suggesting that damaged mtDNA triggers spread of PDD characteristics in an "infectious-like" manner. We also discovered that the mechanism through which damaged mtDNA causes pathology in healthy neurons is independent of Cyclic GMP-AMP synthase and IFNβ/IFNAR, but rather involves the dual activation of TLR9/4 pathways, resulting in increased oxidative stress and neuronal cell death, respectively. Our proteomic analysis of extracellular vesicles containing damaged mtDNA identified the TLR4 activator, Ribosomal Protein S3 as a key protein involved in recognizing and extruding damaged mtDNA. These findings might shed light on new molecular pathways through which damaged mtDNA initiates and spreads PD-like disease, potentially opening new avenues for therapeutic interventions or disease monitoring.
在神经退行性疾病领域,特别是散发性帕金森病伴痴呆(sPDD),疾病在大脑中如何起始和扩散仍然是核心问题。虽然朊病毒样蛋白已被指定为罪魁祸首,但最近的研究表明还涉及其他因素。我们发现氧化应激、受损 DNA 结合、细胞质 DNA 感应以及 Toll 样受体 (TLR)4/9 激活途径与 sPDD 转录组密切相关,该转录组失调的 I 型干扰素 (IFN) 信号。在 sPD 患者中,我们在中额回确认了线粒体 (mt)DNA 的缺失,表明受损 mtDNA 可能在疾病病理生理学中发挥作用。为了探索其对病理学的贡献,我们使用 I 型 IFN 信号缺失引起的 sPDD 自发模型(Ifnb/Ifnar 小鼠)。我们发现神经元 IFNβ/IFNAR 的缺失导致 mtDNA 的氧化、突变和缺失,随后 mtDNA 从神经元中释放出来。将受损的 mtDNA 注射到小鼠脑中会诱导出类似 PDD 的行为症状,包括神经精神、运动和认知障碍。此外,它还导致远离注射部位的脑区发生神经退行性变,表明受损的 mtDNA 以“感染样”方式引发 PDD 特征的传播。我们还发现,受损 mtDNA 在健康神经元中引起病理学的机制独立于环鸟苷酸-腺苷酸合酶和 IFNβ/IFNAR,而是涉及 TLR9/4 途径的双重激活,分别导致氧化应激增加和神经元细胞死亡。我们对含有受损 mtDNA 的细胞外囊泡的蛋白质组学分析鉴定出 TLR4 激活剂核糖体蛋白 S3 是一种参与识别和排出受损 mtDNA 的关键蛋白。这些发现可能揭示了新的分子途径,通过这些途径,受损 mtDNA 引发和传播类似 PD 的疾病,为治疗干预或疾病监测开辟新的途径。